Development of Machine Learning Systems to Predict Cancer-Related Symptoms With Validation Across a Health Care System.

IF 2.8 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-09-01 Epub Date: 2025-09-25 DOI:10.1200/CCI-25-00073
Baijiang Yuan, Muammar Kabir, Jiang Chen He, Yuchen Li, Benjamin Grant, Sharon Narine, Mattea Welch, Sho Podolsky, Ning Liu, Rami Ajaj, Luna Jia Zhan, Aly Fawzy, Janine Xu, Yuhua Zhang, Vivien Yu, Wei Xu, Rahul G Krishnan, Steven Gallinger, Kelvin K W Chan, Monika K Krzyzanowska, Tran Truong, Geoffrey Liu, Robert C Grant
{"title":"Development of Machine Learning Systems to Predict Cancer-Related Symptoms With Validation Across a Health Care System.","authors":"Baijiang Yuan, Muammar Kabir, Jiang Chen He, Yuchen Li, Benjamin Grant, Sharon Narine, Mattea Welch, Sho Podolsky, Ning Liu, Rami Ajaj, Luna Jia Zhan, Aly Fawzy, Janine Xu, Yuhua Zhang, Vivien Yu, Wei Xu, Rahul G Krishnan, Steven Gallinger, Kelvin K W Chan, Monika K Krzyzanowska, Tran Truong, Geoffrey Liu, Robert C Grant","doi":"10.1200/CCI-25-00073","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cancer and its treatment cause symptoms. In this study, we aimed to develop machine learning (ML) systems that predict future symptom deterioration among people receiving treatment for cancer and then validate the systems in a simulated deployment across an entire health care system.</p><p><strong>Methods: </strong>We trained and tested ML systems that predict a deterioration in nine patient-reported symptoms within 30 days after treatments for aerodigestive cancers, using internal electronic health record (EHR) data at Princess Margaret Cancer Centre (3,229 patients; 20,267 treatments). The primary performance metric was the area under the receiver operating characteristic curve (AUROC). The best-performing systems in the held-out internal test set were then externally validated across 82 cancer centers in Ontario (12,079 patients; 77,003 treatments) by adapting techniques from meta-analysis.</p><p><strong>Results: </strong>The best ML systems predicted symptom deterioration with AUROCs ranging from 0.66 (95% CI, 0.63 to 0.69) for dyspnea to 0.73 (95% CI, 0.71 to 0.75) for drowsiness in the internal test cohort. Treatments flagged as high-risk were significantly associated with future symptom deterioration (odds ratios [ORs], 2.53-6.56; all <i>P</i> < .001) and emergency department visits for dyspnea (OR, 1.85; <i>P</i> = .008), depression (OR, 1.84; <i>P</i> = .04), and anxiety (OR, 2.66; <i>P</i> < .001). In the external validation cohort, the AUROCs for different symptoms meta-analyzed across centers ranged from 0.67 (95% CI, 0.66 to 0.68) to 0.73 (95% CI, 0.72 to 0.74). Performance across centers displayed significant heterogeneity for six of nine symptoms (I<sup>2</sup>, 46.4%-66.9%; <i>P</i> = .004 for dyspnea, <i>P</i> < .001 for the rest).</p><p><strong>Conclusion: </strong>ML can predict future symptoms among people with cancer from routine EHR data, which could guide personalized interventions. Heterogeneous performance across centers must be considered when systems are deployed across a health care system.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2500073"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-25-00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Cancer and its treatment cause symptoms. In this study, we aimed to develop machine learning (ML) systems that predict future symptom deterioration among people receiving treatment for cancer and then validate the systems in a simulated deployment across an entire health care system.

Methods: We trained and tested ML systems that predict a deterioration in nine patient-reported symptoms within 30 days after treatments for aerodigestive cancers, using internal electronic health record (EHR) data at Princess Margaret Cancer Centre (3,229 patients; 20,267 treatments). The primary performance metric was the area under the receiver operating characteristic curve (AUROC). The best-performing systems in the held-out internal test set were then externally validated across 82 cancer centers in Ontario (12,079 patients; 77,003 treatments) by adapting techniques from meta-analysis.

Results: The best ML systems predicted symptom deterioration with AUROCs ranging from 0.66 (95% CI, 0.63 to 0.69) for dyspnea to 0.73 (95% CI, 0.71 to 0.75) for drowsiness in the internal test cohort. Treatments flagged as high-risk were significantly associated with future symptom deterioration (odds ratios [ORs], 2.53-6.56; all P < .001) and emergency department visits for dyspnea (OR, 1.85; P = .008), depression (OR, 1.84; P = .04), and anxiety (OR, 2.66; P < .001). In the external validation cohort, the AUROCs for different symptoms meta-analyzed across centers ranged from 0.67 (95% CI, 0.66 to 0.68) to 0.73 (95% CI, 0.72 to 0.74). Performance across centers displayed significant heterogeneity for six of nine symptoms (I2, 46.4%-66.9%; P = .004 for dyspnea, P < .001 for the rest).

Conclusion: ML can predict future symptoms among people with cancer from routine EHR data, which could guide personalized interventions. Heterogeneous performance across centers must be considered when systems are deployed across a health care system.

机器学习系统的发展,以预测癌症相关症状与整个医疗保健系统的验证。
目的:癌症及其治疗引起的症状。在这项研究中,我们的目标是开发机器学习(ML)系统,预测接受癌症治疗的人未来的症状恶化,然后在整个医疗保健系统的模拟部署中验证系统。方法:我们训练并测试了机器学习系统,该系统使用玛格丽特公主癌症中心的内部电子健康记录(EHR)数据(3229例患者,20267例治疗),预测了9例患者在治疗后30天内报告的症状恶化。主要性能指标为受试者工作特征曲线下面积(AUROC)。然后,通过采用meta分析的技术,在安大略省的82个癌症中心(12,079名患者;77,003种治疗方法)对内部测试集中表现最佳的系统进行了外部验证。结果:在内部测试队列中,最佳ML系统预测症状恶化的auroc范围从呼吸困难的0.66 (95% CI, 0.63至0.69)到困倦的0.73 (95% CI, 0.71至0.75)。被标记为高风险的治疗与未来症状恶化(优势比[OR], 2.53-6.56;均P < .001)以及因呼吸困难(OR, 1.85; P = .008)、抑郁(OR, 1.84; P = .04)和焦虑(OR, 2.66; P < .001)而就诊的急诊科显著相关。在外部验证队列中,跨中心meta分析的不同症状的auroc范围为0.67 (95% CI, 0.66至0.68)至0.73 (95% CI, 0.72至0.74)。各中心对9种症状中的6种表现出显著的异质性(I2, 46.4%-66.9%;呼吸困难P = 0.004,其余P < 0.001)。结论:ML可以从常规EHR数据中预测癌症患者的未来症状,为个性化干预提供指导。在整个医疗保健系统中部署系统时,必须考虑跨中心的异构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信