Secure aggregation of sufficiently many private inputs.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-09-10 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1638307
Thijs Veugen, Gabriele Spini, Frank Muller
{"title":"Secure aggregation of sufficiently many private inputs.","authors":"Thijs Veugen, Gabriele Spini, Frank Muller","doi":"10.3389/fdata.2025.1638307","DOIUrl":null,"url":null,"abstract":"<p><p>Secure aggregation of distributed inputs is a well-studied problem. In this study, anonymity of inputs is achieved by assuring a minimal quota before publishing the outcome. We design and implement an efficient cryptographic protocol that mitigates the most important security risks and show its application in the cyber threat intelligence (CTI) domain. Our approach allows for generic aggregation and quota functions. With 20 inputs from different parties, we can do three secure and anonymous aggregations per second, and in a CTI community of 100 partners, 10, 000 aggregations could be performed during one night.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1638307"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1638307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Secure aggregation of distributed inputs is a well-studied problem. In this study, anonymity of inputs is achieved by assuring a minimal quota before publishing the outcome. We design and implement an efficient cryptographic protocol that mitigates the most important security risks and show its application in the cyber threat intelligence (CTI) domain. Our approach allows for generic aggregation and quota functions. With 20 inputs from different parties, we can do three secure and anonymous aggregations per second, and in a CTI community of 100 partners, 10, 000 aggregations could be performed during one night.

足够多的私有输入的安全聚合。
分布式输入的安全聚合是一个研究得很好的问题。在本研究中,输入的匿名性是通过在公布结果之前保证最小的配额来实现的。我们设计并实现了一种有效的加密协议,降低了最重要的安全风险,并展示了其在网络威胁情报(CTI)领域的应用。我们的方法允许通用聚合和配额函数。使用来自不同方的20个输入,我们每秒可以进行3次安全且匿名的聚合,并且在一个由100个合作伙伴组成的CTI社区中,一个晚上可以执行10,000次聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信