Bone Evaluation with Micro Finite Element Analysis in Animal Models.

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Behnam Namiranian, Kenichiro Doi, Salem Alenezi, Sameer B Shah, Saeed Jerban, Eric Y Chang
{"title":"Bone Evaluation with Micro Finite Element Analysis in Animal Models.","authors":"Behnam Namiranian, Kenichiro Doi, Salem Alenezi, Sameer B Shah, Saeed Jerban, Eric Y Chang","doi":"10.3390/tomography11090101","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-computed tomography (micro-CT) is a commonly used tool for bone evaluation in animal model research. Micro-scale finite element analysis (µFEA) has been proposed to account for different loading scenarios, detailed three-dimensional (3D) bone structure, material properties, and distribution obtained from micro-CT to estimate bone mechanical properties and to predict its potential fracture. The in vivo application of µFEA has been limited to animal models due to the smaller bore size of micro-CT and the long scan time. This narrative review article describes studies that used micro-CT-based µFEA to predict bone mechanical competence, understand bone fracture and remodeling mechanisms, and to evaluate the impacts of the therapeutics, implants, and surgical interventions. Moreover, the concept, limitations, and future potentials of micro-CT-based FEA are discussed.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11090101","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-computed tomography (micro-CT) is a commonly used tool for bone evaluation in animal model research. Micro-scale finite element analysis (µFEA) has been proposed to account for different loading scenarios, detailed three-dimensional (3D) bone structure, material properties, and distribution obtained from micro-CT to estimate bone mechanical properties and to predict its potential fracture. The in vivo application of µFEA has been limited to animal models due to the smaller bore size of micro-CT and the long scan time. This narrative review article describes studies that used micro-CT-based µFEA to predict bone mechanical competence, understand bone fracture and remodeling mechanisms, and to evaluate the impacts of the therapeutics, implants, and surgical interventions. Moreover, the concept, limitations, and future potentials of micro-CT-based FEA are discussed.

Abstract Image

Abstract Image

Abstract Image

动物模型骨评价微有限元分析。
显微计算机断层扫描(micro-CT)是动物模型研究中常用的骨评估工具。微尺度有限元分析(µFEA)被提出用于考虑不同的加载场景、详细的三维(3D)骨结构、材料性能和分布,以估计骨的力学性能并预测其潜在的骨折。由于micro-CT的孔径较小,扫描时间较长,因此µFEA在体内的应用仅限于动物模型。这篇叙述性综述文章描述了使用基于微ct的微FEA来预测骨力学能力,了解骨折和重塑机制,并评估治疗,植入物和手术干预的影响的研究。此外,还讨论了基于微ct的有限元分析的概念、局限性和未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信