Empirical Evaluation of Invariances in Deep Vision Models.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Konstantinos Keremis, Eleni Vrochidou, George A Papakostas
{"title":"Empirical Evaluation of Invariances in Deep Vision Models.","authors":"Konstantinos Keremis, Eleni Vrochidou, George A Papakostas","doi":"10.3390/jimaging11090322","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of deep learning models to maintain consistent performance under image transformations-termed invariances, is critical for reliable deployment across diverse computer vision applications. This study presents a comprehensive empirical evaluation of modern convolutional neural networks (CNNs) and vision transformers (ViTs) concerning four fundamental types of image invariances: blur, noise, rotation, and scale. We analyze a curated selection of thirty models across three common vision tasks, object localization, recognition, and semantic segmentation, using benchmark datasets including COCO, ImageNet, and a custom segmentation dataset. Our experimental protocol introduces controlled perturbations to test model robustness and employs task-specific metrics such as mean Intersection over Union (mIoU), and classification accuracy (Acc) to quantify models' performance degradation. Results indicate that while ViTs generally outperform CNNs under blur and noise corruption in recognition tasks, both model families exhibit significant vulnerabilities to rotation and extreme scale transformations. Notably, segmentation models demonstrate higher resilience to geometric variations, with SegFormer and Mask2Former emerging as the most robust architectures. These findings challenge prevailing assumptions regarding model robustness and provide actionable insights for designing vision systems capable of withstanding real-world input variability.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of deep learning models to maintain consistent performance under image transformations-termed invariances, is critical for reliable deployment across diverse computer vision applications. This study presents a comprehensive empirical evaluation of modern convolutional neural networks (CNNs) and vision transformers (ViTs) concerning four fundamental types of image invariances: blur, noise, rotation, and scale. We analyze a curated selection of thirty models across three common vision tasks, object localization, recognition, and semantic segmentation, using benchmark datasets including COCO, ImageNet, and a custom segmentation dataset. Our experimental protocol introduces controlled perturbations to test model robustness and employs task-specific metrics such as mean Intersection over Union (mIoU), and classification accuracy (Acc) to quantify models' performance degradation. Results indicate that while ViTs generally outperform CNNs under blur and noise corruption in recognition tasks, both model families exhibit significant vulnerabilities to rotation and extreme scale transformations. Notably, segmentation models demonstrate higher resilience to geometric variations, with SegFormer and Mask2Former emerging as the most robust architectures. These findings challenge prevailing assumptions regarding model robustness and provide actionable insights for designing vision systems capable of withstanding real-world input variability.

深度视觉模型不变性的经验评价。
深度学习模型在图像变换下保持一致性能的能力(称为不变性)对于跨各种计算机视觉应用的可靠部署至关重要。本研究对现代卷积神经网络(cnn)和视觉变换(ViTs)的四种基本类型的图像不变性进行了全面的实证评估:模糊、噪声、旋转和尺度。我们使用包括COCO、ImageNet和自定义分割数据集在内的基准数据集,分析了三个常见视觉任务(对象定位、识别和语义分割)中精选的30个模型。我们的实验方案引入可控扰动来测试模型的鲁棒性,并采用特定于任务的指标,如平均交联(mIoU)和分类精度(Acc)来量化模型的性能退化。结果表明,尽管ViTs在识别任务中在模糊和噪声损坏情况下通常优于cnn,但两种模型族都表现出明显的旋转和极端尺度变换脆弱性。值得注意的是,分割模型对几何变化表现出更高的弹性,SegFormer和Mask2Former成为最强大的架构。这些发现挑战了关于模型鲁棒性的普遍假设,并为设计能够承受现实世界输入可变性的视觉系统提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信