Semantic-Enhanced and Temporally Refined Bidirectional BEV Fusion for LiDAR-Camera 3D Object Detection.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Xiangjun Qu, Kai Qin, Yaping Li, Shuaizhang Zhang, Yuchen Li, Sizhe Shen, Yun Gao
{"title":"Semantic-Enhanced and Temporally Refined Bidirectional BEV Fusion for LiDAR-Camera 3D Object Detection.","authors":"Xiangjun Qu, Kai Qin, Yaping Li, Shuaizhang Zhang, Yuchen Li, Sizhe Shen, Yun Gao","doi":"10.3390/jimaging11090319","DOIUrl":null,"url":null,"abstract":"<p><p>In domains such as autonomous driving, 3D object detection is a key technology for environmental perception. By integrating multimodal information from sensors such as LiDAR and cameras, the detection accuracy can be significantly improved. However, the current multimodal fusion perception framework still suffers from two problems: first, due to the inherent physical limitations of LiDAR detection, the number of point clouds of distant objects is sparse, resulting in small target objects being easily overwhelmed by the background; second, the cross-modal information interaction is insufficient, and the complementarity and correlation between the LiDAR point cloud and the camera image are not fully exploited and utilized. Therefore, we propose a new multimodal detection strategy, Semantic-Enhanced and Temporally Refined Bidirectional BEV Fusion (SETR-Fusion). This method integrates three key components: the Discriminative Semantic Saliency Activation (DSSA) module, the Temporally Consistent Semantic Point Fusion (TCSP) module, and the Bilateral Cross-Attention Fusion (BCAF) module. The DSSA module fully utilizes image semantic features to capture more discriminative foreground and background cues; the TCSP module generates semantic LiDAR points and, after noise filtering, produces a more accurate semantic LiDAR point cloud; and the BCAF module's cross-attention to camera and LiDAR BEV features in both directions enables strong interaction between the two types of modal information. SETR-Fusion achieves 71.2% mAP and 73.3% NDS values on the nuScenes test set, outperforming several state-of-the-art methods.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In domains such as autonomous driving, 3D object detection is a key technology for environmental perception. By integrating multimodal information from sensors such as LiDAR and cameras, the detection accuracy can be significantly improved. However, the current multimodal fusion perception framework still suffers from two problems: first, due to the inherent physical limitations of LiDAR detection, the number of point clouds of distant objects is sparse, resulting in small target objects being easily overwhelmed by the background; second, the cross-modal information interaction is insufficient, and the complementarity and correlation between the LiDAR point cloud and the camera image are not fully exploited and utilized. Therefore, we propose a new multimodal detection strategy, Semantic-Enhanced and Temporally Refined Bidirectional BEV Fusion (SETR-Fusion). This method integrates three key components: the Discriminative Semantic Saliency Activation (DSSA) module, the Temporally Consistent Semantic Point Fusion (TCSP) module, and the Bilateral Cross-Attention Fusion (BCAF) module. The DSSA module fully utilizes image semantic features to capture more discriminative foreground and background cues; the TCSP module generates semantic LiDAR points and, after noise filtering, produces a more accurate semantic LiDAR point cloud; and the BCAF module's cross-attention to camera and LiDAR BEV features in both directions enables strong interaction between the two types of modal information. SETR-Fusion achieves 71.2% mAP and 73.3% NDS values on the nuScenes test set, outperforming several state-of-the-art methods.

基于语义增强和时间改进的双向BEV融合激光雷达-相机三维目标检测。
在自动驾驶等领域,三维目标检测是环境感知的关键技术。通过整合来自激光雷达和摄像头等传感器的多模态信息,可以显著提高检测精度。然而,目前的多模态融合感知框架仍然存在两个问题:第一,由于LiDAR探测固有的物理限制,远距离物体的点云数量稀疏,导致小目标物体容易被背景淹没;二是跨模态信息交互不足,激光雷达点云和相机图像之间的互补性和相关性没有得到充分的开发和利用。为此,我们提出了一种新的多模态检测策略——语义增强和时间精炼双向BEV融合(SETR-Fusion)。该方法集成了三个关键组件:辨析语义显著性激活(DSSA)模块、时间一致语义点融合(TCSP)模块和双侧交叉注意融合(BCAF)模块。DSSA模块充分利用图像语义特征,捕捉更具区别性的前景和背景线索;TCSP模块生成语义LiDAR点,经过噪声滤波后生成更精确的语义LiDAR点云;BCAF模块在两个方向上对摄像头和LiDAR BEV功能的交叉关注,使两种模态信息之间能够进行强交互。SETR-Fusion在nuScenes测试集上实现了71.2%的mAP和73.3%的NDS值,优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信