Cascaded Spatial and Depth Attention UNet for Hippocampus Segmentation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Zi-Zheng Wei, Bich-Thuy Vu, Maisam Abbas, Ran-Zan Wang
{"title":"Cascaded Spatial and Depth Attention UNet for Hippocampus Segmentation.","authors":"Zi-Zheng Wei, Bich-Thuy Vu, Maisam Abbas, Ran-Zan Wang","doi":"10.3390/jimaging11090311","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel enhancement to the UNet architecture, termed Cascaded Spatial and Depth Attention U-Net (CSDA-UNet), tailored specifically for precise hippocampus segmentation in T1-weighted brain MRI scans. The proposed architecture integrates two key attention mechanisms: a Spatial Attention (SA) module, which refines spatial feature representations by producing attention maps from the deepest convolutional layer and modulating the matching object features; and an Inter-Slice Attention (ISA) module, which enhances volumetric uniformity by integrating related information from adjacent slices, thereby reinforcing the model's capacity to capture inter-slice dependencies. The CSDA-UNet is assessed using hippocampal segmentation data derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Decathlon, two benchmark studies widely employed in neuroimaging research. The proposed model outperforms state-of-the-art methods, achieving a Dice coefficient of 0.9512 and an IoU score of 0.9345 on ADNI and Dice scores of 0.9907/0.8963 (train/validation) and an IoU score of 0.9816/0.8132 (train/validation) on the Decathlon dataset across multiple quantitative metrics. These improvements underscore the efficacy of the proposed dual-attention framework in accurately explaining small, asymmetrical structures such as the hippocampus, while maintaining computational efficiency suitable for clinical deployment.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel enhancement to the UNet architecture, termed Cascaded Spatial and Depth Attention U-Net (CSDA-UNet), tailored specifically for precise hippocampus segmentation in T1-weighted brain MRI scans. The proposed architecture integrates two key attention mechanisms: a Spatial Attention (SA) module, which refines spatial feature representations by producing attention maps from the deepest convolutional layer and modulating the matching object features; and an Inter-Slice Attention (ISA) module, which enhances volumetric uniformity by integrating related information from adjacent slices, thereby reinforcing the model's capacity to capture inter-slice dependencies. The CSDA-UNet is assessed using hippocampal segmentation data derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Decathlon, two benchmark studies widely employed in neuroimaging research. The proposed model outperforms state-of-the-art methods, achieving a Dice coefficient of 0.9512 and an IoU score of 0.9345 on ADNI and Dice scores of 0.9907/0.8963 (train/validation) and an IoU score of 0.9816/0.8132 (train/validation) on the Decathlon dataset across multiple quantitative metrics. These improvements underscore the efficacy of the proposed dual-attention framework in accurately explaining small, asymmetrical structures such as the hippocampus, while maintaining computational efficiency suitable for clinical deployment.

用于海马体分割的级联空间和深度注意单元。
本研究引入了一种新的增强UNet架构,称为级联空间和深度注意U-Net (CSDA-UNet),专门用于在t1加权脑MRI扫描中精确分割海马。该架构集成了两个关键的注意机制:空间注意(SA)模块,该模块通过从最深层卷积层生成注意图和调制匹配对象特征来细化空间特征表示;片间注意(Inter-Slice Attention, ISA)模块,该模块通过整合相邻片的相关信息来增强体积均匀性,从而增强模型捕获片间依赖关系的能力。CSDA-UNet的评估使用来自阿尔茨海默病神经影像学倡议(ADNI)和迪卡athlon的海马分割数据,这两项基准研究广泛应用于神经影像学研究。所提出的模型优于最先进的方法,在ADNI上实现了0.9512的Dice系数和0.9345的IoU分数,在Decathlon数据集上实现了0.9907/0.8963(训练/验证)和0.9816/0.8132(训练/验证)的IoU分数。这些改进强调了所提出的双注意框架在准确解释小的、不对称的结构(如海马体),同时保持适合临床部署的计算效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信