E-CMCA and LSTM-Enhanced Framework for Cross-Modal MRI-TRUS Registration in Prostate Cancer.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Ciliang Shao, Ruijin Xue, Lixu Gu
{"title":"E-CMCA and LSTM-Enhanced Framework for Cross-Modal MRI-TRUS Registration in Prostate Cancer.","authors":"Ciliang Shao, Ruijin Xue, Lixu Gu","doi":"10.3390/jimaging11090292","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate registration of MRI and TRUS images is crucial for effective prostate cancer diagnosis and biopsy guidance, yet modality differences and non-rigid deformations pose significant challenges, especially in dynamic imaging. This study presents a novel cross-modal MRI-TRUS registration framework, leveraging a dual-encoder architecture with an Enhanced Cross-Modal Channel Attention (E-CMCA) module and a LSTM-Based Spatial Deformation Modeling Module. The E-CMCA module efficiently extracts and integrates multi-scale cross-modal features, while the LSTM-Based Spatial Deformation Modeling Module models temporal dynamics by processing depth-sliced 3D deformation fields as sequential data. A VecInt operation ensures smooth, diffeomorphic transformations, and a FuseConv layer enhances feature integration for precise alignment. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model significantly improves registration accuracy and performs robustly in both static 3D and dynamic 4D registration tasks. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model achieves a DSC of 0.865, RDSC of 0.898, TRE of 2.278 mm, and RTRE of 1.293, surpassing state-of-the-art methods and performing robustly in both static 3D and dynamic 4D registration tasks.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate registration of MRI and TRUS images is crucial for effective prostate cancer diagnosis and biopsy guidance, yet modality differences and non-rigid deformations pose significant challenges, especially in dynamic imaging. This study presents a novel cross-modal MRI-TRUS registration framework, leveraging a dual-encoder architecture with an Enhanced Cross-Modal Channel Attention (E-CMCA) module and a LSTM-Based Spatial Deformation Modeling Module. The E-CMCA module efficiently extracts and integrates multi-scale cross-modal features, while the LSTM-Based Spatial Deformation Modeling Module models temporal dynamics by processing depth-sliced 3D deformation fields as sequential data. A VecInt operation ensures smooth, diffeomorphic transformations, and a FuseConv layer enhances feature integration for precise alignment. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model significantly improves registration accuracy and performs robustly in both static 3D and dynamic 4D registration tasks. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model achieves a DSC of 0.865, RDSC of 0.898, TRE of 2.278 mm, and RTRE of 1.293, surpassing state-of-the-art methods and performing robustly in both static 3D and dynamic 4D registration tasks.

E-CMCA和lstm增强框架在前列腺癌的跨模态MRI-TRUS登记。
MRI和TRUS图像的准确配准对于有效的前列腺癌诊断和活检指导至关重要,但形态差异和非刚性变形构成了重大挑战,特别是在动态成像中。本研究提出了一种新的跨模态MRI-TRUS配准框架,利用双编码器架构,具有增强的跨模态通道注意(E-CMCA)模块和基于lstm的空间变形建模模块。E-CMCA模块有效地提取和集成多尺度跨模态特征,而基于lstm的空间变形建模模块通过将深度切片的三维变形场作为序列数据进行处理,建立时间动力学模型。VecInt操作确保平滑的微分同构转换,而FuseConv层增强了精确对齐的特征集成。在MICCAI 2023挑战赛μ-RegPro数据集上的实验表明,我们的模型在静态3D和动态4D配准任务中都能显著提高配准精度和鲁棒性。在MICCAI 2023挑战赛μ-RegPro数据集上的实验表明,该模型的DSC为0.865,RDSC为0.898,TRE为2.278 mm, RTRE为1.293,超越了现有方法,在静态3D和动态4D配准任务中都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信