Investigation of optimal settings for deviceless respiratory synchronization in PET/CT examinations: effects of different reconstructions on image quality.

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Naoto Mori, Kunihiro Iwata, Takahiro Uno, Taku Uchibe, Atsutaka Okizaki
{"title":"Investigation of optimal settings for deviceless respiratory synchronization in PET/CT examinations: effects of different reconstructions on image quality.","authors":"Naoto Mori, Kunihiro Iwata, Takahiro Uno, Taku Uchibe, Atsutaka Okizaki","doi":"10.1007/s12194-025-00964-5","DOIUrl":null,"url":null,"abstract":"<p><p>Positron emission tomography (PET) images can be compromised by respiratory motion, leading to a decreased standardized uptake value (SUV) of the lesion and overestimation of the metabolic tumor volume (MTV). This study aimed to determine the optimal settings for auto-gating, a deviceless respiratory synchronization technique, using advanced intelligent clear-IQ engines (AiCE) and clear adaptive low-noise method (CaLM) reconstruction conditions. We performed phantom and clinical studies on 57 patients with pulmonary lesions. We acquired images at various %count settings (nongated, 30%, 50%, and 70%) using both AiCE and CaLM. In each setting, we measured the SUVmax, SUVpeak, and MTV of the lesions and calculated and compared the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) in the liver. Additionally, we visually assessed lesion blurring and image noise to confirm whether the quantitative evaluation was consistent with the visual evaluation. Considering our findings, the optimal auto-gating setting at an acquisition time of 180 s is 50% for the lower lobe in AiCE and for both the lower and middle lobes in CaLM.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00964-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Positron emission tomography (PET) images can be compromised by respiratory motion, leading to a decreased standardized uptake value (SUV) of the lesion and overestimation of the metabolic tumor volume (MTV). This study aimed to determine the optimal settings for auto-gating, a deviceless respiratory synchronization technique, using advanced intelligent clear-IQ engines (AiCE) and clear adaptive low-noise method (CaLM) reconstruction conditions. We performed phantom and clinical studies on 57 patients with pulmonary lesions. We acquired images at various %count settings (nongated, 30%, 50%, and 70%) using both AiCE and CaLM. In each setting, we measured the SUVmax, SUVpeak, and MTV of the lesions and calculated and compared the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) in the liver. Additionally, we visually assessed lesion blurring and image noise to confirm whether the quantitative evaluation was consistent with the visual evaluation. Considering our findings, the optimal auto-gating setting at an acquisition time of 180 s is 50% for the lower lobe in AiCE and for both the lower and middle lobes in CaLM.

PET/CT检查中无装置呼吸同步的最佳设置研究:不同重建对图像质量的影响。
正电子发射断层扫描(PET)图像可能受到呼吸运动的影响,导致病变的标准化摄取值(SUV)降低和代谢肿瘤体积(MTV)的高估。本研究旨在确定自动门控的最佳设置,这是一种无设备呼吸同步技术,采用先进的智能clear- iq引擎(AiCE)和清晰自适应低噪声方法(CaLM)重建条件。我们对57例肺病变患者进行了幻象和临床研究。我们使用AiCE和CaLM在不同的%计数设置(非计数、30%、50%和70%)下获取图像。在每种情况下,我们测量了病变的SUVmax、SUVpeak和MTV,并计算和比较了肝脏的噪比(CNR)和信噪比(SNR)。此外,我们目测评估病变模糊和图像噪声,以确认定量评价是否与目测评价一致。考虑到我们的研究结果,在180秒的采集时间内,AiCE的下叶和CaLM的下叶和中叶的最佳自动门控设置为50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信