Uncertainty-Guided Active Learning for Access Route Segmentation and Planning in Transcatheter Aortic Valve Implantation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Mahdi Islam, Musarrat Tabassum, Agnes Mayr, Christian Kremser, Markus Haltmeier, Enrique Almar-Munoz
{"title":"Uncertainty-Guided Active Learning for Access Route Segmentation and Planning in Transcatheter Aortic Valve Implantation.","authors":"Mahdi Islam, Musarrat Tabassum, Agnes Mayr, Christian Kremser, Markus Haltmeier, Enrique Almar-Munoz","doi":"10.3390/jimaging11090318","DOIUrl":null,"url":null,"abstract":"<p><p>Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure for treating severe aortic stenosis, where optimal vascular access route selection is critical to reduce complications. It requires careful selection of the iliac artery with the most favourable anatomy, specifically, one with the largest diameters and no segments narrower than 5 mm. This process is time-consuming when carried out manually. We present an active learning-based segmentation framework for contrast-enhanced Cardiac Magnetic Resonance (CMR) data, guided by probabilistic uncertainty and pseudo-labelling, enabling efficient segmentation with minimal manual annotation. The segmentations are then fed into an automated pipeline for diameter quantification, achieving a Dice score of 0.912 and a mean absolute percentage error (MAPE) of 4.92%. An ablation study using pre- and post-contrast CMR showed superior performance with post-contrast data only. Overall, the pipeline provides accurate segmentation and detailed diameter profiles of the aorto-iliac route, helping the assessment of the access route.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure for treating severe aortic stenosis, where optimal vascular access route selection is critical to reduce complications. It requires careful selection of the iliac artery with the most favourable anatomy, specifically, one with the largest diameters and no segments narrower than 5 mm. This process is time-consuming when carried out manually. We present an active learning-based segmentation framework for contrast-enhanced Cardiac Magnetic Resonance (CMR) data, guided by probabilistic uncertainty and pseudo-labelling, enabling efficient segmentation with minimal manual annotation. The segmentations are then fed into an automated pipeline for diameter quantification, achieving a Dice score of 0.912 and a mean absolute percentage error (MAPE) of 4.92%. An ablation study using pre- and post-contrast CMR showed superior performance with post-contrast data only. Overall, the pipeline provides accurate segmentation and detailed diameter profiles of the aorto-iliac route, helping the assessment of the access route.

经导管主动脉瓣植入术中通道分割与规划的不确定性引导主动学习。
经导管主动脉瓣植入术(TAVI)是一种治疗严重主动脉瓣狭窄的微创手术,其中最佳血管通路选择对减少并发症至关重要。它需要仔细选择解剖结构最有利的髂动脉,特别是直径最大且节段不小于5mm的髂动脉。手动执行此过程非常耗时。我们提出了一个基于主动学习的分割框架,用于对比增强心脏磁共振(CMR)数据,以概率不确定性和伪标记为指导,以最少的人工注释实现高效的分割。然后将分割结果输入自动管道进行直径量化,得到0.912的Dice分数和4.92%的平均绝对百分比误差(MAPE)。一项消融研究使用对比前和对比后的CMR显示了仅对比后数据的优越性能。总的来说,该管道提供了主动脉-髂动脉路线的准确分割和详细的直径剖面,有助于评估进入路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信