Estimation of organ and effective doses for rotational cerebral angiography using the National Cancer Institute Dosimetry System for Radiography and Fluoroscopy (NCIRF).

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hitoshi Miyazaki, Toshioh Fujibuchi, Donghee Han, Koji Oura, Takahiro Kosoegawa, Hiroshi Hamasaki, Hideki Yoshikawa, Koichi Arimura, Toyoyuki Kato, Kousei Ishigami, Osamu Togao, Koji Yamashita
{"title":"Estimation of organ and effective doses for rotational cerebral angiography using the National Cancer Institute Dosimetry System for Radiography and Fluoroscopy (NCIRF).","authors":"Hitoshi Miyazaki, Toshioh Fujibuchi, Donghee Han, Koji Oura, Takahiro Kosoegawa, Hiroshi Hamasaki, Hideki Yoshikawa, Koichi Arimura, Toyoyuki Kato, Kousei Ishigami, Osamu Togao, Koji Yamashita","doi":"10.1007/s12194-025-00969-0","DOIUrl":null,"url":null,"abstract":"<p><p>Rotational cerebral angiography requires accurate dosimetry. The National Cancer Institute Dosimetry System for Radiography and Fluoroscopy (NCIRF), a Monte Carlo-based dosimetry software, can evaluate the organ dose (OD) and effective dose (ED) with higher accuracy than the conventional Monte Carlo software (PCXMC). We estimated the OD and ED for three-dimensional digital subtraction angiography (3D-DSA) and cone beam computed tomography (CBCT) using the NCIRF, reflecting dose variations during rotational cerebral angiography. The 3D-DSA and CBCT simulation parameters were obtained by rotational imaging of a physical head phantom using the Artis Q biplane system. The air kerma area product for each projection was determined based on the ratio of the tube current-time product for each projection; the NCIRF was used with male and female voxel-type reference computational phantoms. To validate the simulation results, the lens dose of the phantom was measured using radiophotoluminescence glass dosimeters and compared to the simulated lens dose. The highest ODs were delivered to the brain: 8.8 mGy (males) and 11.6 mGy (females) in 3D-DSA and 50.0 mGy (males) and 59.4 mGy (females) in CBCT. The EDs were 0.27 mSv (males) and 0.35 mSv (females) in 3D-DSA and 1.49 mSv (males) and 1.83 mSv (females) in CBCT. Lens doses differed within 8.0% between measurements and simulations, with 45.9-65.5% overestimation in simulations that did not account for dose variability. Simulations that considered dose variability using the NCIRF more accurately estimated OD and ED in rotational cerebral angiography.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00969-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rotational cerebral angiography requires accurate dosimetry. The National Cancer Institute Dosimetry System for Radiography and Fluoroscopy (NCIRF), a Monte Carlo-based dosimetry software, can evaluate the organ dose (OD) and effective dose (ED) with higher accuracy than the conventional Monte Carlo software (PCXMC). We estimated the OD and ED for three-dimensional digital subtraction angiography (3D-DSA) and cone beam computed tomography (CBCT) using the NCIRF, reflecting dose variations during rotational cerebral angiography. The 3D-DSA and CBCT simulation parameters were obtained by rotational imaging of a physical head phantom using the Artis Q biplane system. The air kerma area product for each projection was determined based on the ratio of the tube current-time product for each projection; the NCIRF was used with male and female voxel-type reference computational phantoms. To validate the simulation results, the lens dose of the phantom was measured using radiophotoluminescence glass dosimeters and compared to the simulated lens dose. The highest ODs were delivered to the brain: 8.8 mGy (males) and 11.6 mGy (females) in 3D-DSA and 50.0 mGy (males) and 59.4 mGy (females) in CBCT. The EDs were 0.27 mSv (males) and 0.35 mSv (females) in 3D-DSA and 1.49 mSv (males) and 1.83 mSv (females) in CBCT. Lens doses differed within 8.0% between measurements and simulations, with 45.9-65.5% overestimation in simulations that did not account for dose variability. Simulations that considered dose variability using the NCIRF more accurately estimated OD and ED in rotational cerebral angiography.

使用国家癌症研究所放射和透视剂量测定系统(NCIRF)估计旋转脑血管造影的器官和有效剂量。
旋转脑血管造影需要精确的剂量测定。美国国家癌症研究所放射和透视剂量测定系统(NCIRF)是一种基于蒙特卡罗的剂量测定软件,可以比传统的蒙特卡罗软件(PCXMC)更准确地评估器官剂量(OD)和有效剂量(ED)。我们使用NCIRF估计了三维数字减影血管造影(3D-DSA)和锥形束计算机断层扫描(CBCT)的OD和ED,反映了旋转脑血管造影期间的剂量变化。利用Artis Q双翼系统对实体头部幻影进行旋转成像,获得3D-DSA和CBCT仿真参数。根据每个投影的管电流-时间积的比值确定每个投影的空气面积积;NCIRF用于男性和女性体素型参考计算幻影。为了验证模拟结果,使用放射性光致发光玻璃剂量计测量了幻影的透镜剂量,并与模拟透镜剂量进行了比较。在3D-DSA中,最高的ODs被传递到大脑:8.8 mGy(男性)和11.6 mGy(女性);CBCT中,50.0 mGy(男性)和59.4 mGy(女性)。3D-DSA的EDs分别为0.27 mSv(男性)和0.35 mSv(女性),CBCT的EDs分别为1.49 mSv(男性)和1.83 mSv(女性)。透镜剂量在测量和模拟之间的差异在8.0%以内,在没有考虑剂量变异性的模拟中高估45.9-65.5%。使用NCIRF考虑剂量变异性的模拟更准确地估计了旋转脑血管造影中的OD和ED。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信