AnomNet: A Dual-Stage Centroid Optimization Framework for Unsupervised Anomaly Detection.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Yuan Gao, Yu Wang, Xiaoguang Tu, Jiaqing Shen
{"title":"AnomNet: A Dual-Stage Centroid Optimization Framework for Unsupervised Anomaly Detection.","authors":"Yuan Gao, Yu Wang, Xiaoguang Tu, Jiaqing Shen","doi":"10.3390/jimaging11090301","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection plays a vital role in ensuring product quality and operational safety across various industrial applications, from manufacturing to infrastructure monitoring. However, current methods often struggle with challenges such as limited generalization to complex multimodal anomalies, poor adaptation to domain-specific patterns, and reduced feature discriminability due to domain gaps between pre-trained models and industrial data. To address these issues, we propose AnomNet, a novel deep anomaly detection framework that integrates a lightweight feature adapter module to bridge domain discrepancies and enhance multi-scale feature discriminability from pre-trained backbones. AnomNet is trained using a dual-stage centroid learning strategy: the first stage employs separation and entropy regularization losses to stabilize and optimize the centroid representation of normal samples; the second stage introduces a centroid-based contrastive learning mechanism to refine decision boundaries by adaptively managing inter- and intra-class feature relationships. The experimental results on the MVTec AD dataset demonstrate the superior performance of AnomNet, achieving a 99.5% image-level AUROC and 98.3% pixel-level AUROC, underscoring its effectiveness and robustness for anomaly detection and localization in industrial environments.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection plays a vital role in ensuring product quality and operational safety across various industrial applications, from manufacturing to infrastructure monitoring. However, current methods often struggle with challenges such as limited generalization to complex multimodal anomalies, poor adaptation to domain-specific patterns, and reduced feature discriminability due to domain gaps between pre-trained models and industrial data. To address these issues, we propose AnomNet, a novel deep anomaly detection framework that integrates a lightweight feature adapter module to bridge domain discrepancies and enhance multi-scale feature discriminability from pre-trained backbones. AnomNet is trained using a dual-stage centroid learning strategy: the first stage employs separation and entropy regularization losses to stabilize and optimize the centroid representation of normal samples; the second stage introduces a centroid-based contrastive learning mechanism to refine decision boundaries by adaptively managing inter- and intra-class feature relationships. The experimental results on the MVTec AD dataset demonstrate the superior performance of AnomNet, achieving a 99.5% image-level AUROC and 98.3% pixel-level AUROC, underscoring its effectiveness and robustness for anomaly detection and localization in industrial environments.

无监督异常检测的双阶段质心优化框架。
异常检测在确保各种工业应用(从制造业到基础设施监控)的产品质量和操作安全方面发挥着至关重要的作用。然而,目前的方法经常面临挑战,例如对复杂多模态异常的泛化有限,对特定领域模式的适应性差,以及由于预训练模型和工业数据之间的领域差距而降低的特征可判别性。为了解决这些问题,我们提出了一种新的深度异常检测框架AnomNet,它集成了一个轻量级的特征适配器模块来弥合域差异,并增强了预训练主干的多尺度特征可分辨性。AnomNet使用双阶段质心学习策略进行训练:第一阶段使用分离和熵正则化损失来稳定和优化正态样本的质心表示;第二阶段引入基于质心的对比学习机制,通过自适应管理类间和类内特征关系来细化决策边界。在MVTec AD数据集上的实验结果证明了AnomNet的卓越性能,达到了99.5%的图像级AUROC和98.3%的像素级AUROC,突出了其在工业环境中异常检测和定位的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信