Research Progress on Color Image Quality Assessment.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Minjuan Gao, Chenye Song, Qiaorong Zhang, Xuande Zhang, Yankang Li, Fujiang Yuan
{"title":"Research Progress on Color Image Quality Assessment.","authors":"Minjuan Gao, Chenye Song, Qiaorong Zhang, Xuande Zhang, Yankang Li, Fujiang Yuan","doi":"10.3390/jimaging11090307","DOIUrl":null,"url":null,"abstract":"<p><p>Image quality assessment (IQA) aims to measure the consistency between an objective algorithm output and a subjective perception measurement. This article focuses on this complex relationship in the context of color image scenarios-color image quality assessment (CIQA). This review systematically investigates CIQA applications in image compression, processing optimization, and domain-specific scenarios, analyzes benchmark datasets and assessment metrics, and categorizes CIQA algorithms into full-reference (FR), reduced-reference (RR) and no-reference (NR) methods. In this study, color images are evaluated using a newly developed CIQA framework. Focusing on FR and NR methods, FR methods leverage reference images with machine learning, visual perception models, and mathematical frameworks, while NR methods utilize distortion-only features through feature fusion and extraction techniques. Specialized CIQA algorithms are developed for robotics, low-light, and underwater imaging. Despite progress, challenges remain in cross-domain adaptability, generalization, and contextualized assessment. Future directions may include prototype-based cross-domain adaptation, fidelity-structure balancing, spatiotemporal consistency integration, and CIQA-restoration synergy to meet emerging demands.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Image quality assessment (IQA) aims to measure the consistency between an objective algorithm output and a subjective perception measurement. This article focuses on this complex relationship in the context of color image scenarios-color image quality assessment (CIQA). This review systematically investigates CIQA applications in image compression, processing optimization, and domain-specific scenarios, analyzes benchmark datasets and assessment metrics, and categorizes CIQA algorithms into full-reference (FR), reduced-reference (RR) and no-reference (NR) methods. In this study, color images are evaluated using a newly developed CIQA framework. Focusing on FR and NR methods, FR methods leverage reference images with machine learning, visual perception models, and mathematical frameworks, while NR methods utilize distortion-only features through feature fusion and extraction techniques. Specialized CIQA algorithms are developed for robotics, low-light, and underwater imaging. Despite progress, challenges remain in cross-domain adaptability, generalization, and contextualized assessment. Future directions may include prototype-based cross-domain adaptation, fidelity-structure balancing, spatiotemporal consistency integration, and CIQA-restoration synergy to meet emerging demands.

彩色图像质量评价的研究进展。
图像质量评估(IQA)旨在衡量客观算法输出与主观感知测量之间的一致性。本文在彩色图像场景——彩色图像质量评估(CIQA)的背景下,重点研究了这种复杂的关系。本文系统地研究了CIQA在图像压缩、处理优化和特定领域场景中的应用,分析了基准数据集和评估指标,并将CIQA算法分为全参考(FR)、减少参考(RR)和无参考(NR)方法。在本研究中,使用新开发的CIQA框架对彩色图像进行评估。在FR和NR方法中,FR方法通过机器学习、视觉感知模型和数学框架利用参考图像,而NR方法通过特征融合和提取技术利用仅失真的特征。专门的CIQA算法被开发用于机器人、微光和水下成像。尽管取得了进展,但在跨领域适应性、泛化和情境化评估方面仍然存在挑战。未来的发展方向可能包括基于原型的跨域自适应、保真度-结构平衡、时空一致性集成和ciqa -恢复协同,以满足新兴需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信