{"title":"Hybrid-Recursive-Refinement Network for Camouflaged Object Detection.","authors":"Hailong Chen, Xinyi Wang, Haipeng Jin","doi":"10.3390/jimaging11090299","DOIUrl":null,"url":null,"abstract":"<p><p>Camouflaged object detection (COD) seeks to precisely detect and delineate objects that are concealed within complex and ambiguous backgrounds. However, due to subtle texture variations and semantic ambiguity, it remains a highly challenging task. Existing methods that rely solely on either convolutional neural network (CNN) or Transformer architectures often suffer from incomplete feature representations and the loss of boundary details. To address the aforementioned challenges, we propose an innovative hybrid architecture that synergistically leverages the strengths of CNNs and Transformers. In particular, we devise a Hybrid Feature Fusion Module (HFFM) that harmonizes hierarchical features extracted from CNN and Transformer pathways, ultimately boosting the representational quality of the combined features. Furthermore, we design a Combined Recursive Decoder (CRD) that adaptively aggregates hierarchical features through recursive pooling/upsampling operators and stage-wise mask-guided refinement, enabling precise structural detail capture across multiple scales. In addition, we propose a Foreground-Background Selection (FBS) module, which alternates attention between foreground objects and background boundary regions, progressively refining object contours while suppressing background interference. Evaluations on four widely used public COD datasets, CHAMELEON, CAMO, COD10K, and NC4K, demonstrate that our method achieves state-of-the-art performance.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Camouflaged object detection (COD) seeks to precisely detect and delineate objects that are concealed within complex and ambiguous backgrounds. However, due to subtle texture variations and semantic ambiguity, it remains a highly challenging task. Existing methods that rely solely on either convolutional neural network (CNN) or Transformer architectures often suffer from incomplete feature representations and the loss of boundary details. To address the aforementioned challenges, we propose an innovative hybrid architecture that synergistically leverages the strengths of CNNs and Transformers. In particular, we devise a Hybrid Feature Fusion Module (HFFM) that harmonizes hierarchical features extracted from CNN and Transformer pathways, ultimately boosting the representational quality of the combined features. Furthermore, we design a Combined Recursive Decoder (CRD) that adaptively aggregates hierarchical features through recursive pooling/upsampling operators and stage-wise mask-guided refinement, enabling precise structural detail capture across multiple scales. In addition, we propose a Foreground-Background Selection (FBS) module, which alternates attention between foreground objects and background boundary regions, progressively refining object contours while suppressing background interference. Evaluations on four widely used public COD datasets, CHAMELEON, CAMO, COD10K, and NC4K, demonstrate that our method achieves state-of-the-art performance.