Kenza Chenni, Carlos Brito-Loeza, Cefa Karabağ, Lavdie Rada
{"title":"From Detection to Motion-Based Classification: A Two-Stage Approach for <i>T. cruzi</i> Identification in Video Sequences.","authors":"Kenza Chenni, Carlos Brito-Loeza, Cefa Karabağ, Lavdie Rada","doi":"10.3390/jimaging11090315","DOIUrl":null,"url":null,"abstract":"<p><p>Chagas disease, caused by <i>Trypanosoma cruzi</i> (<i>T. cruzi</i>), remains a significant public health challenge in Latin America. Traditional diagnostic methods relying on manual microscopy suffer from low sensitivity, subjective interpretation, and poor performance in suboptimal conditions. This study presents a novel computer vision framework integrating motion analysis with deep learning for automated <i>T. cruzi</i> detection in microscopic videos. Our motion-based detection pipeline leverages parasite motility as a key discriminative feature, employing frame differencing, morphological processing, and DBSCAN clustering across 23 microscopic videos. This approach effectively addresses limitations of static image analysis in challenging conditions including noisy backgrounds, uneven illumination, and low contrast. From motion-identified regions, 64×64 patches were extracted for classification. MobileNetV2 achieved superior performance with 99.63% accuracy, 100% precision, 99.12% recall, and an AUC-ROC of 1.0. Additionally, YOLOv5 and YOLOv8 models (Nano, Small, Medium variants) were trained on 43 annotated videos, with YOLOv5-Nano and YOLOv8-Nano demonstrating excellent detection capability on unseen test data. This dual-stage framework offers a practical, computationally efficient solution for automated Chagas diagnosis, particularly valuable for resource-constrained laboratories with poor imaging quality.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), remains a significant public health challenge in Latin America. Traditional diagnostic methods relying on manual microscopy suffer from low sensitivity, subjective interpretation, and poor performance in suboptimal conditions. This study presents a novel computer vision framework integrating motion analysis with deep learning for automated T. cruzi detection in microscopic videos. Our motion-based detection pipeline leverages parasite motility as a key discriminative feature, employing frame differencing, morphological processing, and DBSCAN clustering across 23 microscopic videos. This approach effectively addresses limitations of static image analysis in challenging conditions including noisy backgrounds, uneven illumination, and low contrast. From motion-identified regions, 64×64 patches were extracted for classification. MobileNetV2 achieved superior performance with 99.63% accuracy, 100% precision, 99.12% recall, and an AUC-ROC of 1.0. Additionally, YOLOv5 and YOLOv8 models (Nano, Small, Medium variants) were trained on 43 annotated videos, with YOLOv5-Nano and YOLOv8-Nano demonstrating excellent detection capability on unseen test data. This dual-stage framework offers a practical, computationally efficient solution for automated Chagas diagnosis, particularly valuable for resource-constrained laboratories with poor imaging quality.