Elena De Mattia, Yoomi Park, Elena Peruzzi, Yitian Zhou, Rossana Roncato, Jerry Polesel, Lucia Scarabel, Matthias Schwab, Henk-Jan Guchelaar, Jesse Joachim Swen, Michele Spina, Fabio Puglisi, Giuseppe Toffoli, Volker M Lauschke, Erika Cecchin
{"title":"Integration of germline pharmacogenomic burden to predict fluoropyrimidine-related toxicity - A secondary analysis of the PREPARE trial.","authors":"Elena De Mattia, Yoomi Park, Elena Peruzzi, Yitian Zhou, Rossana Roncato, Jerry Polesel, Lucia Scarabel, Matthias Schwab, Henk-Jan Guchelaar, Jesse Joachim Swen, Michele Spina, Fabio Puglisi, Giuseppe Toffoli, Volker M Lauschke, Erika Cecchin","doi":"10.1038/s41388-025-03587-7","DOIUrl":null,"url":null,"abstract":"<p><p>Testing for four dihydropyrimidine dehydrogenase (DPYD) variants (DPYD*2 A, DPYD*13, c.2846 A > T, DPYD-HapB3) is currently implemented in clinical practice to prevent fluoropyrimidines (FLs) related toxicity but with limited sensitivity. This study aimed to identify novel genetic factors in FL-related genes to enhance risk prediction using data from the PREPARE trial (NCT03093818). Two hundred seventy-four patients receiving FL-based chemotherapy with severe toxicity were sequenced for 60 candidate genes. Gene and pathway-level association analyses focusing mainly on rare variants were performed using dedicated statistical tests, including gene-wise variant burden (GVB) analysis. DPYD germline variant burden beyond the four routinely tested markers emerged to contribute to toxicity, indicating that rarer genetic variants could help in refining the optimal FL dosage (p < 0.1). Functional rare variant burden in ABCB5, PARP1, ENOSF1, CYP3A4 and nuclear receptors pathway impacted on toxicity risk (p < 0.05 in at least one statistical test). GVB analysis confirmed ABCB5 as a significant risk gene and highlighted ABCC4, HNF4A, and XRCC3 as additional candidates. A predictive model combining genetic burden scores with clinical variables improved the identification of high-risk patients (sensitivity=0.71, specificity=0.74, accuracy=0.73). This study indicated a paradigm shift from population to individual-level arguing for an extension of testing beyond the four DPYD currently considered variants to predict FL-related toxicity.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03587-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Testing for four dihydropyrimidine dehydrogenase (DPYD) variants (DPYD*2 A, DPYD*13, c.2846 A > T, DPYD-HapB3) is currently implemented in clinical practice to prevent fluoropyrimidines (FLs) related toxicity but with limited sensitivity. This study aimed to identify novel genetic factors in FL-related genes to enhance risk prediction using data from the PREPARE trial (NCT03093818). Two hundred seventy-four patients receiving FL-based chemotherapy with severe toxicity were sequenced for 60 candidate genes. Gene and pathway-level association analyses focusing mainly on rare variants were performed using dedicated statistical tests, including gene-wise variant burden (GVB) analysis. DPYD germline variant burden beyond the four routinely tested markers emerged to contribute to toxicity, indicating that rarer genetic variants could help in refining the optimal FL dosage (p < 0.1). Functional rare variant burden in ABCB5, PARP1, ENOSF1, CYP3A4 and nuclear receptors pathway impacted on toxicity risk (p < 0.05 in at least one statistical test). GVB analysis confirmed ABCB5 as a significant risk gene and highlighted ABCC4, HNF4A, and XRCC3 as additional candidates. A predictive model combining genetic burden scores with clinical variables improved the identification of high-risk patients (sensitivity=0.71, specificity=0.74, accuracy=0.73). This study indicated a paradigm shift from population to individual-level arguing for an extension of testing beyond the four DPYD currently considered variants to predict FL-related toxicity.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.