Ugo Lomoio, Valentina Carbonari, Federico Manuel Giorgi, Francesco Ortuso, Pietro Lió, Pierangelo Veltri, Pietro Hiram Guzzi
{"title":"Integrative structural profiling and ligand optimisation across the transthyretin mutational landscape.","authors":"Ugo Lomoio, Valentina Carbonari, Federico Manuel Giorgi, Francesco Ortuso, Pietro Lió, Pierangelo Veltri, Pietro Hiram Guzzi","doi":"10.1038/s41540-025-00582-2","DOIUrl":null,"url":null,"abstract":"<p><p>Transthyretin amyloidosis (ATTR) is a genetically diverse disorder caused by destabilising mutations in the transthyretin (TTR) protein, leading to pathological aggregation. While stabilisers like tafamidis and acoramidis are approved, their efficacy across TTR variants remains unclear. This study presents an in silico pipeline combining AlphaFold3 for structure prediction, ESM2 for sequence embeddings, DiffDock-L and AutoDock Vina for molecular docking, and DiffSBDD for ligand generation. Simulations show that binding affinities of approved ligands vary significantly among TTR variants, with some mutations (e.g., W61L, Y98F) reducing binding despite being distant from the binding site. Embedding-based clustering highlights potential benign mutations and supports scalable variant classification. Additionally, customised ligand optimisation can recover binding affinity in specific cases, though effects are mutation-dependent. These findings emphasise the need for variant-aware therapeutic strategies. This integrative approach offers a foundation for precision drug design in ATTR, enabling the development of personalised stabilisers tailored to individual mutational profiles.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"104"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00582-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transthyretin amyloidosis (ATTR) is a genetically diverse disorder caused by destabilising mutations in the transthyretin (TTR) protein, leading to pathological aggregation. While stabilisers like tafamidis and acoramidis are approved, their efficacy across TTR variants remains unclear. This study presents an in silico pipeline combining AlphaFold3 for structure prediction, ESM2 for sequence embeddings, DiffDock-L and AutoDock Vina for molecular docking, and DiffSBDD for ligand generation. Simulations show that binding affinities of approved ligands vary significantly among TTR variants, with some mutations (e.g., W61L, Y98F) reducing binding despite being distant from the binding site. Embedding-based clustering highlights potential benign mutations and supports scalable variant classification. Additionally, customised ligand optimisation can recover binding affinity in specific cases, though effects are mutation-dependent. These findings emphasise the need for variant-aware therapeutic strategies. This integrative approach offers a foundation for precision drug design in ATTR, enabling the development of personalised stabilisers tailored to individual mutational profiles.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.