PMkbase (version 1.0): an interactive web-based tool for tracking bacterial metabolic traits using phenotype microarrays made interoperable with sequence information and visualizing/processing PM data.
K Jayanth Krishnan, Ying Hefner, Richard Szubin, Jonathan Monk, David T Pride, Bernhard Palsson
{"title":"PMkbase (version 1.0): an interactive web-based tool for tracking bacterial metabolic traits using phenotype microarrays made interoperable with sequence information and visualizing/processing PM data.","authors":"K Jayanth Krishnan, Ying Hefner, Richard Szubin, Jonathan Monk, David T Pride, Bernhard Palsson","doi":"10.1128/spectrum.03279-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria showcase remarkable metabolic diversity and traits, even among strains of the same species. In recent years, a large number of bacterial genomes have been sequenced, leading to the elucidation and documentation of genomic differences and commonalities across and within species. Genome-scale metabolic reconstructions, which are often defined and curated using data from phenotype microarrays, elucidate the differences in metabolic traits resulting from genomic diversity. These microarrays measure cellular respiration on a variety of carbon, nitrogen, phosphorus, and sulfur sources and various stressors and inhibitors over a period of time to determine the metabolic activity of a given strain. Despite their popularity in measuring bacterial metabolic activity and traits, no public databases that allow researchers to warehouse, access, and analyze this information currently exist. Additionally, there are no publicly available tools that allow researchers to view the variance of these metabolic traits across bacterial strains. To address this need, we present Phenotype Microarray Knowledgebase (PMkbase [version 1.0], https://pmkbase.com/), an interactive database that acts as a repository of phenotype microarray (PM) data with integrated sequence information. Binarized activity calls, along with associated kinetic parameters, are made for all metabolic substrates and inhibitors. Users can upload their own data for analysis and visualization and to perform quality checks on their experiments. PMkbase will address an unmet need to track and view bacterial metabolic traits and provide researchers with valuable information to develop metabolic models, enrich pangenomic analyses, and design new experiments.IMPORTANCEBacterial species can be differentiated by their metabolic profiles or the type of nutrients they consume. Interestingly, strains within the same species also display differences in nutrient consumption. Phenotype microarrays are a high-throughput, widely used technology to measure which substrates can be metabolized by various microbial strains and the extent to which inhibitors can affect it. Despite their widespread use, public databases to parse and access this data type at scale do not exist. PMkbase, which contains 9,024 data points for nitrogen substrate utilization, 41,664 data points for carbon substrate utilization, 8,448 data points for phosphorus/sulfur substrate utilization, and 27,264 data points on various antibiotics across three species (<i>Escherichia coli</i>, <i>Pseudomonas putida</i>, and <i>Staphylococcus aureus</i>), has been developed to allow researchers to freely access PM data, along with enriching the data with sequence information.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0327924"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.03279-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria showcase remarkable metabolic diversity and traits, even among strains of the same species. In recent years, a large number of bacterial genomes have been sequenced, leading to the elucidation and documentation of genomic differences and commonalities across and within species. Genome-scale metabolic reconstructions, which are often defined and curated using data from phenotype microarrays, elucidate the differences in metabolic traits resulting from genomic diversity. These microarrays measure cellular respiration on a variety of carbon, nitrogen, phosphorus, and sulfur sources and various stressors and inhibitors over a period of time to determine the metabolic activity of a given strain. Despite their popularity in measuring bacterial metabolic activity and traits, no public databases that allow researchers to warehouse, access, and analyze this information currently exist. Additionally, there are no publicly available tools that allow researchers to view the variance of these metabolic traits across bacterial strains. To address this need, we present Phenotype Microarray Knowledgebase (PMkbase [version 1.0], https://pmkbase.com/), an interactive database that acts as a repository of phenotype microarray (PM) data with integrated sequence information. Binarized activity calls, along with associated kinetic parameters, are made for all metabolic substrates and inhibitors. Users can upload their own data for analysis and visualization and to perform quality checks on their experiments. PMkbase will address an unmet need to track and view bacterial metabolic traits and provide researchers with valuable information to develop metabolic models, enrich pangenomic analyses, and design new experiments.IMPORTANCEBacterial species can be differentiated by their metabolic profiles or the type of nutrients they consume. Interestingly, strains within the same species also display differences in nutrient consumption. Phenotype microarrays are a high-throughput, widely used technology to measure which substrates can be metabolized by various microbial strains and the extent to which inhibitors can affect it. Despite their widespread use, public databases to parse and access this data type at scale do not exist. PMkbase, which contains 9,024 data points for nitrogen substrate utilization, 41,664 data points for carbon substrate utilization, 8,448 data points for phosphorus/sulfur substrate utilization, and 27,264 data points on various antibiotics across three species (Escherichia coli, Pseudomonas putida, and Staphylococcus aureus), has been developed to allow researchers to freely access PM data, along with enriching the data with sequence information.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.