Qiwen Sun, Xinyi Huang, Han Long, Jianhua Guo, Ruilin Zhang, Daru Lu, Hongyan Yao, Keji Jiang, Yan Pi
{"title":"Dysregulation of Glu/GABA and reduction of triglycerides contribute to valproic acid-induced autism model in zebrafish.","authors":"Qiwen Sun, Xinyi Huang, Han Long, Jianhua Guo, Ruilin Zhang, Daru Lu, Hongyan Yao, Keji Jiang, Yan Pi","doi":"10.1016/j.jlr.2025.100911","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorders are neurodevelopmental conditions that pose substantial diagnostic and therapeutic challenges. Maternal exposure to valproic acid (VPA) during pregnancy is a well-established risk factor associated with autism-like behaviors in offspring. This study characterized the metabolic phenotypes in the brain tissue of larval zebrafish following VPA exposure. Zebrafish were exposed to 4 μM VPA from 2 hours post-fertilization (hpf) until 4.5 days post-fertilization (dpf), and locomotor activity was assessed at 14 dpf. Comprehensive metabolomic profiling via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified 2,613 metabolites in brain tissue, of which 50 showed potential links to autism (CTRL_CV < 15%, VPA_CV < 20%). Significant reductions were observed in the levels of glutamine, glutamate, and triacylglycerol (TG). Nile red staining confirmed profoundly decreased TG deposition in the dorsal telencephalon (pallium), habenula, and cerebellum of VPA-exposed zebrafish. Furthermore, in vivo imaging revealed attenuated fluorescence intensity in excitatory glutamatergic and inhibitory GABAergic neurons within the habenular nucleus and optic tectum, corresponding to reduced TG levels. Conversely, the cerebellar corpus (central cerebellar body) and inferior olive nucleus exhibited an increase in excitatory glutamatergic neurons and a reduction in inhibitory GABAergic neurons, indicating an excitatory/inhibitory (E/I) imbalance. Collectively, these findings suggest that VPA may promote autism pathogenesis by disrupting the glutamine-glutamate cycle and impairing triacylglycerol metabolism in the zebrafish brain. These findings offer novel insights into metabolic dysfunction in ASD and may facilitate the identification of potential diagnostic biomarkers.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100911"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorders are neurodevelopmental conditions that pose substantial diagnostic and therapeutic challenges. Maternal exposure to valproic acid (VPA) during pregnancy is a well-established risk factor associated with autism-like behaviors in offspring. This study characterized the metabolic phenotypes in the brain tissue of larval zebrafish following VPA exposure. Zebrafish were exposed to 4 μM VPA from 2 hours post-fertilization (hpf) until 4.5 days post-fertilization (dpf), and locomotor activity was assessed at 14 dpf. Comprehensive metabolomic profiling via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified 2,613 metabolites in brain tissue, of which 50 showed potential links to autism (CTRL_CV < 15%, VPA_CV < 20%). Significant reductions were observed in the levels of glutamine, glutamate, and triacylglycerol (TG). Nile red staining confirmed profoundly decreased TG deposition in the dorsal telencephalon (pallium), habenula, and cerebellum of VPA-exposed zebrafish. Furthermore, in vivo imaging revealed attenuated fluorescence intensity in excitatory glutamatergic and inhibitory GABAergic neurons within the habenular nucleus and optic tectum, corresponding to reduced TG levels. Conversely, the cerebellar corpus (central cerebellar body) and inferior olive nucleus exhibited an increase in excitatory glutamatergic neurons and a reduction in inhibitory GABAergic neurons, indicating an excitatory/inhibitory (E/I) imbalance. Collectively, these findings suggest that VPA may promote autism pathogenesis by disrupting the glutamine-glutamate cycle and impairing triacylglycerol metabolism in the zebrafish brain. These findings offer novel insights into metabolic dysfunction in ASD and may facilitate the identification of potential diagnostic biomarkers.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.