A Parameter-Fitted PC-SAFT Framework for Solubility Extrapolation in Drug-Polymer Systems.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Alex Mathers, Michal Fulem
{"title":"A Parameter-Fitted PC-SAFT Framework for Solubility Extrapolation in Drug-Polymer Systems.","authors":"Alex Mathers, Michal Fulem","doi":"10.1021/acs.molpharmaceut.5c00939","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate modeling of drug-polymer solubility is essential for the rational design of amorphous solid dispersions and other advanced pharmaceutical formulations. The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state has emerged as a robust framework for capturing complex thermodynamic interactions in such systems. However, its predictive accuracy is often constrained by the limited availability of validated pure-component parameters and the frequent need to optimize the binary interaction parameter (<i>k</i><sub>ij</sub>) to match experimental data. In this study, we present a novel application of PC-SAFT as a data-driven extrapolation tool in which model parameters are directly regressed to experimental solubility data for specific drug-polymer pairs. This approach repositions PC-SAFT from a purely predictive model to a pragmatic extrapolative framework, enabling solubility estimation without reliance on pretabulated parameters or speculative <i>k</i><sub>ij</sub> adjustments. In a separate analysis, we further demonstrate that using arbitrary pure-component parameter values─when coupled with <i>k</i><sub>ij</sub> optimization─can achieve predictive performance comparable to that of literature-derived parameters. This finding underscores the dominant role of the binary interaction parameter and suggests that detailed pure-component calibration may not be essential for capturing the solubility behavior. Case studies confirm that both strategies reliably reproduce experimental trends and offer practical paths for bridging data gaps in the thermodynamic modeling of drug-polymer systems.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00939","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate modeling of drug-polymer solubility is essential for the rational design of amorphous solid dispersions and other advanced pharmaceutical formulations. The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state has emerged as a robust framework for capturing complex thermodynamic interactions in such systems. However, its predictive accuracy is often constrained by the limited availability of validated pure-component parameters and the frequent need to optimize the binary interaction parameter (kij) to match experimental data. In this study, we present a novel application of PC-SAFT as a data-driven extrapolation tool in which model parameters are directly regressed to experimental solubility data for specific drug-polymer pairs. This approach repositions PC-SAFT from a purely predictive model to a pragmatic extrapolative framework, enabling solubility estimation without reliance on pretabulated parameters or speculative kij adjustments. In a separate analysis, we further demonstrate that using arbitrary pure-component parameter values─when coupled with kij optimization─can achieve predictive performance comparable to that of literature-derived parameters. This finding underscores the dominant role of the binary interaction parameter and suggests that detailed pure-component calibration may not be essential for capturing the solubility behavior. Case studies confirm that both strategies reliably reproduce experimental trends and offer practical paths for bridging data gaps in the thermodynamic modeling of drug-polymer systems.

药物-聚合物体系溶解度外推的参数拟合PC-SAFT框架。
药物-聚合物溶解度的精确建模对于合理设计非晶固体分散体和其他先进的药物配方至关重要。摄动链统计关联流体理论(PC-SAFT)状态方程已成为捕获此类系统中复杂热力学相互作用的强大框架。然而,其预测精度往往受到验证的纯组分参数的有限可用性和频繁需要优化二元相互作用参数(kij)以匹配实验数据的限制。在本研究中,我们提出了PC-SAFT作为数据驱动外推工具的新应用,其中模型参数直接回归到特定药物-聚合物对的实验溶解度数据。这种方法将PC-SAFT从纯粹的预测模型重新定位为实用的外推框架,使溶解度估计不依赖于预先设定的参数或推测的kij调整。在另一项单独的分析中,我们进一步证明,使用任意纯组分参数值──当与kij优化相结合──可以实现与文献导出参数相当的预测性能。这一发现强调了二元相互作用参数的主导作用,并表明详细的纯组分校准可能不是捕获溶解度行为所必需的。案例研究证实,这两种策略都可靠地再现了实验趋势,并为弥合药物-聚合物体系热力学建模中的数据差距提供了实用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信