Doruntina Bresilla, Ines Tawfik, Martin Hirtl, Sonja Gabrijelčič, Julian Ostaku, Fabienne Mossegger, Lia Wurzer, Susanne Lederer, Katarina Kalinova, Ernst Malle, Markus Schosserer, Kim Zarse, Michael Ristow, Corina T Madreiter-Sokolowski
{"title":"Enhancing Late-Life Survival and Mobility via Mitohormesis by Reducing Mitochondrial Calcium Levels.","authors":"Doruntina Bresilla, Ines Tawfik, Martin Hirtl, Sonja Gabrijelčič, Julian Ostaku, Fabienne Mossegger, Lia Wurzer, Susanne Lederer, Katarina Kalinova, Ernst Malle, Markus Schosserer, Kim Zarse, Michael Ristow, Corina T Madreiter-Sokolowski","doi":"10.1111/acel.70247","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial calcium (Ca<sup>2+</sup>) homeostasis plays a critical role in aging and cellular fitness. In the search for novel antiaging approaches, we explored how genetic and pharmacological inhibition of mitochondrial Ca<sup>2+</sup> uptake influences the lifespan and health of Caenorhabditis elegans. Using live-cell imaging, we demonstrate that RNA interference-mediated knockdown of mcu-1, the nematode ortholog of the mitochondrial Ca<sup>2+</sup> uniporter (MCU), reduces mitochondrial Ca<sup>2+</sup> levels, thereby extending lifespan and preserving motility during aging, while compromising early-life survival. This longevity benefit requires intervention before day 14 and coincides with a transient increase in reactive oxygen species (ROS), which activates pathways involving pmk-1, daf-16, and skn-1, orthologs of human p38 mitogen-activated protein kinase (p38 MAPK), forkhead box O (FOXO), and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. This pathway promotes antioxidant defense mechanisms and preserves mitochondrial structure and function during aging, maintaining larger, more interconnected mitochondria and restoring the oxidized/reduced nicotinamide adenine dinucleotide (NAD<sup>+</sup>/NADH) ratio and oxygen consumption rates to youthful levels. Pharmacological inhibition of mitochondrial Ca<sup>2+</sup> uptake using the MCU inhibitor mitoxantrone mirrors the effects of mcu-1 knockdown, extending lifespan and improving fitness in aged nematodes. In human foreskin fibroblasts, short-term mitoxantrone treatment also transiently elevates ROS production and induces enhanced expression and activity of antioxidant defense enzymes, underscoring the translational relevance of findings from nematodes to human cells. Our findings suggest that modulation of mitochondrial Ca<sup>2+</sup> uptake induces mitohormesis through ROS-mediated signaling, promoting improved longevity and healthspan in nematodes, with possible implications for healthy aging in humans.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70247"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70247","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial calcium (Ca2+) homeostasis plays a critical role in aging and cellular fitness. In the search for novel antiaging approaches, we explored how genetic and pharmacological inhibition of mitochondrial Ca2+ uptake influences the lifespan and health of Caenorhabditis elegans. Using live-cell imaging, we demonstrate that RNA interference-mediated knockdown of mcu-1, the nematode ortholog of the mitochondrial Ca2+ uniporter (MCU), reduces mitochondrial Ca2+ levels, thereby extending lifespan and preserving motility during aging, while compromising early-life survival. This longevity benefit requires intervention before day 14 and coincides with a transient increase in reactive oxygen species (ROS), which activates pathways involving pmk-1, daf-16, and skn-1, orthologs of human p38 mitogen-activated protein kinase (p38 MAPK), forkhead box O (FOXO), and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. This pathway promotes antioxidant defense mechanisms and preserves mitochondrial structure and function during aging, maintaining larger, more interconnected mitochondria and restoring the oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio and oxygen consumption rates to youthful levels. Pharmacological inhibition of mitochondrial Ca2+ uptake using the MCU inhibitor mitoxantrone mirrors the effects of mcu-1 knockdown, extending lifespan and improving fitness in aged nematodes. In human foreskin fibroblasts, short-term mitoxantrone treatment also transiently elevates ROS production and induces enhanced expression and activity of antioxidant defense enzymes, underscoring the translational relevance of findings from nematodes to human cells. Our findings suggest that modulation of mitochondrial Ca2+ uptake induces mitohormesis through ROS-mediated signaling, promoting improved longevity and healthspan in nematodes, with possible implications for healthy aging in humans.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.