{"title":"PointGS: Point-Wise Feature-Aware Gaussian Splatting for Sparse View Synthesis","authors":"Lintao Xiang, Hongpei Zheng, Yating Huang, Qijun Yang, Hujun Yin","doi":"10.1049/ipr2.70216","DOIUrl":null,"url":null,"abstract":"<p>3D Gaussian splatting (3DGS) is an innovative rendering technique that surpasses the neural radiance field (NeRF) in both rendering speed and visual quality by leveraging an explicit 3D scene representation. Existing 3DGS approaches require a large number of calibrated views to generate a consistent and complete scene representation. When input views are limited, 3DGS tends to overfit the training views, leading to noticeable degradation in rendering quality. To address this limitation, we propose a point-wise feature-aware Gaussian splatting framework that enables real-time, high-quality rendering from sparse training views. Specifically, we employ the latest stereo foundation model to estimate accurate camera poses and reconstruct a dense point cloud for Gaussian initialisation. Then we encode the colour attributes of each 3D Gaussian by sampling and aggregating multiscale 2D appearance features from sparse inputs. To enhance point-wise appearance representation, we design a point interaction network based on a self-attention mechanism, allowing each Gaussian point to interact with its nearest neighbours. These enriched features are subsequently decoded into Gaussian parameters through two lightweight multilayer perceptrons for final rendering. Extensive experiments on diverse benchmarks demonstrate that our method significantly outperforms NeRF-based approaches and achieves competitive performance under few-shot settings compared to the state-of-the-art 3DGS methods.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ipr2.70216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
3D Gaussian splatting (3DGS) is an innovative rendering technique that surpasses the neural radiance field (NeRF) in both rendering speed and visual quality by leveraging an explicit 3D scene representation. Existing 3DGS approaches require a large number of calibrated views to generate a consistent and complete scene representation. When input views are limited, 3DGS tends to overfit the training views, leading to noticeable degradation in rendering quality. To address this limitation, we propose a point-wise feature-aware Gaussian splatting framework that enables real-time, high-quality rendering from sparse training views. Specifically, we employ the latest stereo foundation model to estimate accurate camera poses and reconstruct a dense point cloud for Gaussian initialisation. Then we encode the colour attributes of each 3D Gaussian by sampling and aggregating multiscale 2D appearance features from sparse inputs. To enhance point-wise appearance representation, we design a point interaction network based on a self-attention mechanism, allowing each Gaussian point to interact with its nearest neighbours. These enriched features are subsequently decoded into Gaussian parameters through two lightweight multilayer perceptrons for final rendering. Extensive experiments on diverse benchmarks demonstrate that our method significantly outperforms NeRF-based approaches and achieves competitive performance under few-shot settings compared to the state-of-the-art 3DGS methods.
期刊介绍:
The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications.
Principal topics include:
Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality.
Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing.
Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing.
Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video.
Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography.
Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security.
Current Special Issue Call for Papers:
Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf
AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf
Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf
Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf