{"title":"Oleuropein Modulates Mitophagy and Metabolism in Cardiomyocyte Via the PINK1/Parkin Signaling Pathway","authors":"Hao Ling, Chunli Song","doi":"10.1002/ddr.70171","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oleuropein (OLEU), a natural polyphenol, exhibits cardioprotective potential through mitochondrial modulation, yet its precise mechanisms remain elusive. This study elucidates OLEU's role in alleviating oxidative stress and regulating mitochondrial quality control via the PINK1/Parkin pathway. In vitro, H9C2 cardiomyocytes exposed to H₂O₂-induced oxidative stress were treated with OLEU (0–200 μM), and analyses included cell viability, ROS, SOD, MDA, ΔΨm, ATP, PINK1/Parkin expression and detection of Mitophagic Flux. In vivo, myocardial infarction (MI) was induced in SD rats via coronary ligation, followed by OLEU administration, with assessments of cardiac function, histopathology, and mitophagy using echocardiography, electron microscopy, immunohistochemistry and immunofluorescence. Results showed that OLEU (≤200 μM) dose-dependently restored cell viability, reduced ROS, and normalized SOD/MDA (<i>p</i> < 0.05), while mitigating ΔΨm collapse and ATP depletion, indicating enhanced mitochondrial bioenergetics. OLEU upregulated PINK1/Parkin, promoting mitophagic clearance of damaged mitochondria, and metabolomic analysis revealed modulation of arginine/proline and lipid pathways. In MI rats, OLEU attenuated ROS, preserved myocardial structure, and improved cardiac function, supported by elevated mitophagy in electron microscopy. These findings demonstrate that OLEU protects cardiomyocytes by suppressing oxidative stress, stabilizing mitochondrial integrity, and activating PINK1/Parkin-mediated mitophagy, highlighting its therapeutic potential for myocardial injury and mitochondrial dysfunction.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/ddr.70171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oleuropein (OLEU), a natural polyphenol, exhibits cardioprotective potential through mitochondrial modulation, yet its precise mechanisms remain elusive. This study elucidates OLEU's role in alleviating oxidative stress and regulating mitochondrial quality control via the PINK1/Parkin pathway. In vitro, H9C2 cardiomyocytes exposed to H₂O₂-induced oxidative stress were treated with OLEU (0–200 μM), and analyses included cell viability, ROS, SOD, MDA, ΔΨm, ATP, PINK1/Parkin expression and detection of Mitophagic Flux. In vivo, myocardial infarction (MI) was induced in SD rats via coronary ligation, followed by OLEU administration, with assessments of cardiac function, histopathology, and mitophagy using echocardiography, electron microscopy, immunohistochemistry and immunofluorescence. Results showed that OLEU (≤200 μM) dose-dependently restored cell viability, reduced ROS, and normalized SOD/MDA (p < 0.05), while mitigating ΔΨm collapse and ATP depletion, indicating enhanced mitochondrial bioenergetics. OLEU upregulated PINK1/Parkin, promoting mitophagic clearance of damaged mitochondria, and metabolomic analysis revealed modulation of arginine/proline and lipid pathways. In MI rats, OLEU attenuated ROS, preserved myocardial structure, and improved cardiac function, supported by elevated mitophagy in electron microscopy. These findings demonstrate that OLEU protects cardiomyocytes by suppressing oxidative stress, stabilizing mitochondrial integrity, and activating PINK1/Parkin-mediated mitophagy, highlighting its therapeutic potential for myocardial injury and mitochondrial dysfunction.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.