A Hybrid Network Speech Recognition Method for English Short Passage Reading Emotion Analysis in Multi-Access Edge Intelligence Scenarios

IF 0.5 Q4 TELECOMMUNICATIONS
Jun Liao
{"title":"A Hybrid Network Speech Recognition Method for English Short Passage Reading Emotion Analysis in Multi-Access Edge Intelligence Scenarios","authors":"Jun Liao","doi":"10.1002/itl2.70108","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Speech emotion recognition based on edge computing technology and deep learning can effectively assist in improving the quality of English short passage reading instruction. Restricted by limited computing resources of different edge devices, existing deep models pose a huge challenge for mobile deployment. To alleviate this issue, this paper proposes a novel hybrid speech emotion recognition model in multi-access edge intelligence scenarios. Firstly, we extract the Log Mel features from the speech signal collected by different clients' microphone sensors. Then, on the cloud platform, we deploy an efficient feature extraction backbone by exploiting 1D convolution operations, a minimal gated unit (MGU) module, and a Mamba module, which is introduced for exploiting long-range dependencies with linear computational complexity. We conducted extensive comparative experiments on the public dataset and our own English reading sentiment dataset, and our proposed model achieved the highest recognition performance.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Speech emotion recognition based on edge computing technology and deep learning can effectively assist in improving the quality of English short passage reading instruction. Restricted by limited computing resources of different edge devices, existing deep models pose a huge challenge for mobile deployment. To alleviate this issue, this paper proposes a novel hybrid speech emotion recognition model in multi-access edge intelligence scenarios. Firstly, we extract the Log Mel features from the speech signal collected by different clients' microphone sensors. Then, on the cloud platform, we deploy an efficient feature extraction backbone by exploiting 1D convolution operations, a minimal gated unit (MGU) module, and a Mamba module, which is introduced for exploiting long-range dependencies with linear computational complexity. We conducted extensive comparative experiments on the public dataset and our own English reading sentiment dataset, and our proposed model achieved the highest recognition performance.

Abstract Image

多访问边缘智能场景下英语短文阅读情感分析的混合网络语音识别方法
基于边缘计算技术和深度学习的语音情感识别可以有效帮助提高英语短文阅读教学质量。现有的深度模型受到不同边缘设备计算资源的限制,给移动部署带来了巨大的挑战。为了解决这一问题,本文提出了一种新的多接入边缘智能场景下的混合语音情感识别模型。首先,从不同客户端麦克风传感器采集的语音信号中提取Log Mel特征;然后,在云平台上,我们通过利用1D卷积操作、最小门控单元(MGU)模块和Mamba模块部署了高效的特征提取骨干,Mamba模块用于利用具有线性计算复杂性的远程依赖关系。我们在公共数据集和我们自己的英语阅读情感数据集上进行了广泛的对比实验,我们提出的模型取得了最高的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信