Wajahat Hussain, Mahum Naveed, Asad Khan, Taimoor Hasan Khan, Muhammad Latif Anjum, Shahzad Rasool, Adnan Maqsood
{"title":"Low Cost 3D Motion Capture of Rapid Maneuvers Using a Single High Speed Camera","authors":"Wajahat Hussain, Mahum Naveed, Asad Khan, Taimoor Hasan Khan, Muhammad Latif Anjum, Shahzad Rasool, Adnan Maqsood","doi":"10.1002/cav.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Motion capture options at a high rate, for example, kinematics of flying organisms, are limited. Inertial sensors or marker-based tracking are infeasible due to the mounting requirement. The advent of high-speed cameras being made available for commercial use has facilitated the discovery of intriguing high-rate behaviors. However, analyzing rapid kinematics in three dimensions necessitates using two or more high-speed cameras, which are specialized equipment and come at a significant expense. In this study, we utilize a conventional methodology of capturing synchronized multiple views using a solitary camera and a planar mirror. We introduce a user-friendly software package that facilitates the calibration of this economical setup, enabling the three-dimensional (3D) analysis of high-rate maneuvers and automatic tracking over long video sequences. Within ∼15 min, a single high-speed camera is calibrated and can be used to acquire 3D data. We accompany the toolbox with a detailed user guide and video tutorial (\nhttps://tinyurl.com/yckm9y6b) for ease of use. We accurately reconstruct dense tracks for multiple high-rate maneuvers, including flying insect species (dragonfly, butterfly, and housefly), spinning coin, and rotating fan blades. We believe that our affordable setup will assist in gathering high-rate natural phenomena, leading to realistic and diverse simulations.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70070","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Motion capture options at a high rate, for example, kinematics of flying organisms, are limited. Inertial sensors or marker-based tracking are infeasible due to the mounting requirement. The advent of high-speed cameras being made available for commercial use has facilitated the discovery of intriguing high-rate behaviors. However, analyzing rapid kinematics in three dimensions necessitates using two or more high-speed cameras, which are specialized equipment and come at a significant expense. In this study, we utilize a conventional methodology of capturing synchronized multiple views using a solitary camera and a planar mirror. We introduce a user-friendly software package that facilitates the calibration of this economical setup, enabling the three-dimensional (3D) analysis of high-rate maneuvers and automatic tracking over long video sequences. Within ∼15 min, a single high-speed camera is calibrated and can be used to acquire 3D data. We accompany the toolbox with a detailed user guide and video tutorial (
https://tinyurl.com/yckm9y6b) for ease of use. We accurately reconstruct dense tracks for multiple high-rate maneuvers, including flying insect species (dragonfly, butterfly, and housefly), spinning coin, and rotating fan blades. We believe that our affordable setup will assist in gathering high-rate natural phenomena, leading to realistic and diverse simulations.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.