High throughput characterization method of electrical and phonon properties by dielectric resonant spectroscopy

Ziru Wang, Mingyang Qin, Peng Zhang, Yiguo Xu, Shiting Que, Feng Yan, X.-D. Xiang
{"title":"High throughput characterization method of electrical and phonon properties by dielectric resonant spectroscopy","authors":"Ziru Wang,&nbsp;Mingyang Qin,&nbsp;Peng Zhang,&nbsp;Yiguo Xu,&nbsp;Shiting Que,&nbsp;Feng Yan,&nbsp;X.-D. Xiang","doi":"10.1002/mgea.70010","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of Materials Genome Initiative, there is an urgent need for nondestructive, rapid characterization methods for obtaining electrical transport properties and phonon information of materials. In this article, we develop a method using the dielectric resonant spectroscopies of materials to derive critical parameters such as conduction electron frequency, quantum relaxation time, and phonon frequency for metals and semiconductors. As a typical example, based on the new approaches, we realized simultaneous extraction of carrier concentration <i>n</i> and electron-phonon relaxation time <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\tau }_{e-p}$</annotation>\n </semantics></math>, and establish a new relationship of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <mo>·</mo>\n <msup>\n <mi>T</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>·</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\tau }_{e-p}={C}^{\\ast }\\mathit{\\cdot }{T}^{-1}\\mathit{\\cdot }{n}^{-1/3}$</annotation>\n </semantics></math> for n-type doped silicon, where the true electron-phonon coupling constant <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${C}^{\\ast }$</annotation>\n </semantics></math> is proposed for the first time. This innovative methodology offers significant potential for high-throughput screening of materials, expediting the development of next-generation electronic devices.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of Materials Genome Initiative, there is an urgent need for nondestructive, rapid characterization methods for obtaining electrical transport properties and phonon information of materials. In this article, we develop a method using the dielectric resonant spectroscopies of materials to derive critical parameters such as conduction electron frequency, quantum relaxation time, and phonon frequency for metals and semiconductors. As a typical example, based on the new approaches, we realized simultaneous extraction of carrier concentration n and electron-phonon relaxation time τ e p ${\tau }_{e-p}$ , and establish a new relationship of τ e p = C · T 1 · n 1 / 3 ${\tau }_{e-p}={C}^{\ast }\mathit{\cdot }{T}^{-1}\mathit{\cdot }{n}^{-1/3}$ for n-type doped silicon, where the true electron-phonon coupling constant C ${C}^{\ast }$ is proposed for the first time. This innovative methodology offers significant potential for high-throughput screening of materials, expediting the development of next-generation electronic devices.

Abstract Image

电介质谐振光谱法表征电和声子特性的高通量方法
随着材料基因组计划的推进,迫切需要一种无损的、快速的表征方法来获取材料的电输运性质和声子信息。在本文中,我们开发了一种利用材料的介电共振光谱来推导金属和半导体的传导电子频率、量子弛豫时间和声子频率等关键参数的方法。作为典型的例子,基于新方法,我们实现了同时提取载流子浓度n和电子-声子弛豫时间τ e−p ${\tau}_{e-p}$;建立了新的关系式τ e−p = C *·T−1·n−1/3 ${\tau}_{e-p}={C}^{\ast}\mathit{\cdot}{T}^{-1}\mathit{\cdot}{n}^{-1/3}$其中首次提出了真电子-声子耦合常数C∗${C}^{\ast}$。这种创新的方法为材料的高通量筛选提供了巨大的潜力,加快了下一代电子设备的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信