ProME: An integrated computational platform for material properties at extremes and its application in multicomponent alloy design

Xingyu Gao, William Yi Wang, Xin Chen, Xiaoyu Chong, Jiawei Xian, Fuyang Tian, Lifang Wang, Huajie Chen, Yu Liu, Houbing Huang, Haifeng Song
{"title":"ProME: An integrated computational platform for material properties at extremes and its application in multicomponent alloy design","authors":"Xingyu Gao,&nbsp;William Yi Wang,&nbsp;Xin Chen,&nbsp;Xiaoyu Chong,&nbsp;Jiawei Xian,&nbsp;Fuyang Tian,&nbsp;Lifang Wang,&nbsp;Huajie Chen,&nbsp;Yu Liu,&nbsp;Houbing Huang,&nbsp;Haifeng Song","doi":"10.1002/mgea.70029","DOIUrl":null,"url":null,"abstract":"<p>We have built an integrated computational platform for material properties at extreme conditions, Professional Materials at Extremes (ProME) v1.0, which enables integrated calculations for multicomponent alloys, covering high temperatures up to tens of thousands of Kelvin, high pressures up to millions of atmospheres, and high strain rates up to millions per second. A series of software packages have been developed and integrated into ProME v1.0, including AI-based crystal search for crystal structure search under pressure, similar atomic environment for disordered configuration modeling, Multiphase Fast Previewer by Mean-Field Potential for multiphase thermodynamic properties, High-throughput Toolkit for Elasticity Modeling for thermo-elastic properties, TRansport at Extremes for electrical and thermal conductivity, High plastic phase model software for phase-field simulation of microstructure evolution under high strain rates, and AutoCalphad for modeling and optimization of phase diagrams with variable compositions. ProME v1.0 has been applied to design the composition of the quaternary alloys Platinum-Iridium-Aluminum-Chromium (Pt-Ir-Al-Cr) for engine nozzles of aerospace attitude-orbit control, achieving high-temperature strength comparable to the currently used Pt-Ir alloys but with significantly reduced costs for raw materials. ProME offers crucial support for advancing both fundamental scientific understanding and industrial innovation in materials research and development.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have built an integrated computational platform for material properties at extreme conditions, Professional Materials at Extremes (ProME) v1.0, which enables integrated calculations for multicomponent alloys, covering high temperatures up to tens of thousands of Kelvin, high pressures up to millions of atmospheres, and high strain rates up to millions per second. A series of software packages have been developed and integrated into ProME v1.0, including AI-based crystal search for crystal structure search under pressure, similar atomic environment for disordered configuration modeling, Multiphase Fast Previewer by Mean-Field Potential for multiphase thermodynamic properties, High-throughput Toolkit for Elasticity Modeling for thermo-elastic properties, TRansport at Extremes for electrical and thermal conductivity, High plastic phase model software for phase-field simulation of microstructure evolution under high strain rates, and AutoCalphad for modeling and optimization of phase diagrams with variable compositions. ProME v1.0 has been applied to design the composition of the quaternary alloys Platinum-Iridium-Aluminum-Chromium (Pt-Ir-Al-Cr) for engine nozzles of aerospace attitude-orbit control, achieving high-temperature strength comparable to the currently used Pt-Ir alloys but with significantly reduced costs for raw materials. ProME offers crucial support for advancing both fundamental scientific understanding and industrial innovation in materials research and development.

Abstract Image

ProME:一个极端材料性能的综合计算平台及其在多组分合金设计中的应用
我们已经建立了一个在极端条件下材料性能的集成计算平台,极端专业材料(ProME) v1.0,它可以对多组分合金进行集成计算,覆盖高达数万开尔文的高温,高达数百万大气压的高压,以及高达每秒数百万的高应变率。一系列软件包已经开发并集成到ProME v1.0中,包括基于人工智能的晶体搜索(用于压力下的晶体结构搜索)、类似原子环境(用于无序配置建模)、基于平均场势的多相快速预览器(用于多相热力学性质)、用于热弹性性质建模的高通量工具箱(用于弹性建模)、用于电导率和导热率的极端输运(TRansport at Extremes)、高塑性相模型软件用于高应变速率下相场模拟微观组织演变,autocalphhad用于可变成分相图的建模和优化。ProME v1.0已应用于设计用于航空航天姿态轨道控制发动机喷嘴的铂铱铝铬(Pt-Ir- al - cr)季元合金的成分,实现了与目前使用的Pt-Ir合金相当的高温强度,但大大降低了原材料成本。ProME为推进材料研究和开发的基础科学理解和工业创新提供了至关重要的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信