Toward accurate machine learning-driven prediction of polymeric composites properties based on experimental data

Joseph Han, In Kim, Namjung Cho, Kwan Soo Yang, Jin Suk Myung, Jaeseong Park, Seong Hun Kim, Woo Jin Choi
{"title":"Toward accurate machine learning-driven prediction of polymeric composites properties based on experimental data","authors":"Joseph Han,&nbsp;In Kim,&nbsp;Namjung Cho,&nbsp;Kwan Soo Yang,&nbsp;Jin Suk Myung,&nbsp;Jaeseong Park,&nbsp;Seong Hun Kim,&nbsp;Woo Jin Choi","doi":"10.1002/mgea.70027","DOIUrl":null,"url":null,"abstract":"<p>In response to climate change, there has been a focus on developing lightweight and environmentally friendly materials, with active research aimed at enhancing the energy efficiency of electric and hybrid vehicles. In this context, the development of polymer composites with superior thermal conductivity (TC) has been recognized as critical to meeting mechanical property requirements. This paper presents a machine learning model that utilized 1774 experimental data points to predict various properties of polymer composites, such as density, heat deflection temperature, flexural modulus, flexural strength, tensile yield strength, impact strength, and TC. Various data representation methods for composition data are employed, and the XGBoost model is trained, achieving high accuracy with an average <i>R</i><sup>2</sup> score of 0.95. This machine learning model, informed by experimental data, is a useful tool for predicting and optimizing the properties of polymer composites.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In response to climate change, there has been a focus on developing lightweight and environmentally friendly materials, with active research aimed at enhancing the energy efficiency of electric and hybrid vehicles. In this context, the development of polymer composites with superior thermal conductivity (TC) has been recognized as critical to meeting mechanical property requirements. This paper presents a machine learning model that utilized 1774 experimental data points to predict various properties of polymer composites, such as density, heat deflection temperature, flexural modulus, flexural strength, tensile yield strength, impact strength, and TC. Various data representation methods for composition data are employed, and the XGBoost model is trained, achieving high accuracy with an average R2 score of 0.95. This machine learning model, informed by experimental data, is a useful tool for predicting and optimizing the properties of polymer composites.

Abstract Image

基于实验数据的精确的机器学习驱动的聚合物复合材料性能预测
为了应对气候变化,人们一直致力于开发轻质环保材料,积极研究提高电动和混合动力汽车的能源效率。在这种情况下,开发具有优异导热性(TC)的聚合物复合材料已被认为是满足机械性能要求的关键。本文提出了一个机器学习模型,利用1774个实验数据点来预测聚合物复合材料的各种性能,如密度、热挠曲温度、弯曲模量、弯曲强度、拉伸屈服强度、冲击强度和TC。对成分数据采用了多种数据表示方法,并训练了XGBoost模型,达到了较高的准确率,平均R2得分为0.95。基于实验数据的机器学习模型是预测和优化聚合物复合材料性能的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信