GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials

Ke Xu, Hekai Bu, Shuning Pan, Eric Lindgren, Yongchao Wu, Yong Wang, Jiahui Liu, Keke Song, Bin Xu, Yifan Li, Tobias Hainer, Lucas Svensson, Julia Wiktor, Rui Zhao, Hongfu Huang, Cheng Qian, Shuo Zhang, Zezhu Zeng, Bohan Zhang, Benrui Tang, Yang Xiao, Zihan Yan, Jiuyang Shi, Zhixin Liang, Junjie Wang, Ting Liang, Shuo Cao, Yanzhou Wang, Penghua Ying, Nan Xu, Chengbing Chen, Yuwen Zhang, Zherui Chen, Xin Wu, Wenwu Jiang, Esme Berger, Yanlong Li, Shunda Chen, Alexander J. Gabourie, Haikuan Dong, Shiyun Xiong, Ning Wei, Yue Chen, Jianbin Xu, Feng Ding, Zhimei Sun, Tapio Ala-Nissila, Ari Harju, Jincheng Zheng, Pengfei Guan, Paul Erhart, Jian Sun, Wengen Ouyang, Yanjing Su, Zheyong Fan
{"title":"GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials","authors":"Ke Xu,&nbsp;Hekai Bu,&nbsp;Shuning Pan,&nbsp;Eric Lindgren,&nbsp;Yongchao Wu,&nbsp;Yong Wang,&nbsp;Jiahui Liu,&nbsp;Keke Song,&nbsp;Bin Xu,&nbsp;Yifan Li,&nbsp;Tobias Hainer,&nbsp;Lucas Svensson,&nbsp;Julia Wiktor,&nbsp;Rui Zhao,&nbsp;Hongfu Huang,&nbsp;Cheng Qian,&nbsp;Shuo Zhang,&nbsp;Zezhu Zeng,&nbsp;Bohan Zhang,&nbsp;Benrui Tang,&nbsp;Yang Xiao,&nbsp;Zihan Yan,&nbsp;Jiuyang Shi,&nbsp;Zhixin Liang,&nbsp;Junjie Wang,&nbsp;Ting Liang,&nbsp;Shuo Cao,&nbsp;Yanzhou Wang,&nbsp;Penghua Ying,&nbsp;Nan Xu,&nbsp;Chengbing Chen,&nbsp;Yuwen Zhang,&nbsp;Zherui Chen,&nbsp;Xin Wu,&nbsp;Wenwu Jiang,&nbsp;Esme Berger,&nbsp;Yanlong Li,&nbsp;Shunda Chen,&nbsp;Alexander J. Gabourie,&nbsp;Haikuan Dong,&nbsp;Shiyun Xiong,&nbsp;Ning Wei,&nbsp;Yue Chen,&nbsp;Jianbin Xu,&nbsp;Feng Ding,&nbsp;Zhimei Sun,&nbsp;Tapio Ala-Nissila,&nbsp;Ari Harju,&nbsp;Jincheng Zheng,&nbsp;Pengfei Guan,&nbsp;Paul Erhart,&nbsp;Jian Sun,&nbsp;Wengen Ouyang,&nbsp;Yanjing Su,&nbsp;Zheyong Fan","doi":"10.1002/mgea.70028","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a comprehensive overview of the latest stable release of the graphics processing units molecular dynamics (GPUMD) package, GPUMD 4.0. We begin with a brief review of its development history, starting from the initial version. We then discuss the theoretical foundations for the development of the GPUMD package, including the formulations of the interatomic force, virial and heat current for many-body potentials, the development of the highly efficient and flexible neuroevolution potential (NEP) method, the supported integrators and related operations, the various physical properties that can be calculated on the fly, and the GPUMD ecosystem. After presenting these functionalities, we review a range of applications enabled by GPUMD, particularly in combination with the NEP approach. Finally, we outline possible future development directions for GPUMD.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive overview of the latest stable release of the graphics processing units molecular dynamics (GPUMD) package, GPUMD 4.0. We begin with a brief review of its development history, starting from the initial version. We then discuss the theoretical foundations for the development of the GPUMD package, including the formulations of the interatomic force, virial and heat current for many-body potentials, the development of the highly efficient and flexible neuroevolution potential (NEP) method, the supported integrators and related operations, the various physical properties that can be calculated on the fly, and the GPUMD ecosystem. After presenting these functionalities, we review a range of applications enabled by GPUMD, particularly in combination with the NEP approach. Finally, we outline possible future development directions for GPUMD.

Abstract Image

GPUMD 4.0:一个高性能的分子动力学包,用于具有机器学习潜力的多功能材料模拟
本文全面介绍了最新稳定发布的图形处理单元分子动力学(GPUMD)包GPUMD 4.0。我们首先简要回顾一下它的开发历史,从最初的版本开始。然后讨论了GPUMD开发的理论基础,包括多体势的原子间力、维里和热流的公式,高效灵活的神经进化势(NEP)方法的发展,支持的积分器和相关操作,可以在飞行中计算的各种物理性质,以及GPUMD生态系统。在介绍了这些功能之后,我们回顾了GPUMD支持的一系列应用程序,特别是与NEP方法结合使用的应用程序。最后,我们概述了GPUMD未来可能的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信