Jinghong Xu, Liwei Jiang, Junhao Liu, Jiali Liu, Yuanqiang Chen, Jun Zhu, Chi Fang, Qi Shao, Yuntian Zou, Huijing Bai
{"title":"Free-induction-decay magnetometer based on synchronous optical pumping and RF pulse modulation","authors":"Jinghong Xu, Liwei Jiang, Junhao Liu, Jiali Liu, Yuanqiang Chen, Jun Zhu, Chi Fang, Qi Shao, Yuntian Zou, Huijing Bai","doi":"10.1140/epjqt/s40507-025-00373-y","DOIUrl":null,"url":null,"abstract":"<div><p>Free-induction-decay (FID) magnetometer is highly suitable for precise magnetic field sensing in unshielded environments with the benefit of exceptional accuracy and large dynamic range. The sensitivity of the FID magnetometer is directly influenced by the signal-to-noise ratio, making it critical to enhance the amplitude of the FID signal. In this study, we propose a FID magnetometer based on synchronous optical pumping and RF pulse modulation. A comprehensive theoretical description of the magnetometer is introduced, followed by simulation and experiment that compare the proposed modulation method with the synchronous optical pumping modulation method and the RF pulse modulation method. The results show that the synchronous optical pumping and RF pulse modulation achieves the enhancement of the FID signal and improves the magnetometer sensitivity. Furthermore, the dead zone of the magnetometer is reduced to the direction of the probe beam. This work is significant for further development of optically pumped magnetometers and provides a new scheme for their applications in unshielded environments.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00373-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00373-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Free-induction-decay (FID) magnetometer is highly suitable for precise magnetic field sensing in unshielded environments with the benefit of exceptional accuracy and large dynamic range. The sensitivity of the FID magnetometer is directly influenced by the signal-to-noise ratio, making it critical to enhance the amplitude of the FID signal. In this study, we propose a FID magnetometer based on synchronous optical pumping and RF pulse modulation. A comprehensive theoretical description of the magnetometer is introduced, followed by simulation and experiment that compare the proposed modulation method with the synchronous optical pumping modulation method and the RF pulse modulation method. The results show that the synchronous optical pumping and RF pulse modulation achieves the enhancement of the FID signal and improves the magnetometer sensitivity. Furthermore, the dead zone of the magnetometer is reduced to the direction of the probe beam. This work is significant for further development of optically pumped magnetometers and provides a new scheme for their applications in unshielded environments.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.