A signed-rank estimator for nonlinear regression models when covariates and errors are dependent

IF 0.6 4区 数学 Q3 STATISTICS & PROBABILITY
Hira L. Koul, Palaniappan Vellaisamy
{"title":"A signed-rank estimator for nonlinear regression models when covariates and errors are dependent","authors":"Hira L. Koul,&nbsp;Palaniappan Vellaisamy","doi":"10.1007/s10463-025-00929-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper contains the proof of the asymptotic uniform linearity of a sequence of simple linear signed-rank statistics based on the residuals of a class of nonlinear parametric regression models, where regression errors are possibly dependent on the covariates. This result in turn is used to prove the asymptotic normality of a signed rank estimator of the regression parameter vector in the given nonlinear regression model where covariates and regression errors are dependent and in the errors in variables linear regression model, when the distributions of the covariates and measurement errors are known.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 4","pages":"563 - 596"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00929-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper contains the proof of the asymptotic uniform linearity of a sequence of simple linear signed-rank statistics based on the residuals of a class of nonlinear parametric regression models, where regression errors are possibly dependent on the covariates. This result in turn is used to prove the asymptotic normality of a signed rank estimator of the regression parameter vector in the given nonlinear regression model where covariates and regression errors are dependent and in the errors in variables linear regression model, when the distributions of the covariates and measurement errors are known.

当协变量和误差相关时非线性回归模型的带符号秩估计
本文利用一类非线性参数回归模型的残差证明了简单线性符号秩统计量序列的渐近一致线性性,其中回归误差可能依赖于协变量。这一结果反过来又被用来证明在给定的非线性回归模型中,当协变量和回归误差的分布已知时,回归参数向量的有符号秩估计量的渐近正态性,其中协变量和回归误差是相关的,并且在变量的线性回归模型的误差中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信