Primitive chain network simulations of double peaks in viscosity growth curves of densely branched pom-pom polymer melts in fast shear flows

IF 3 3区 工程技术 Q2 MECHANICS
Yuichi Masubuchi, Max G. Schußmann, Kyu Hyun, Manfred Wilhelm, Valerian Hirschberg, Giovanni Ianniruberto, Giuseppe Marrucci
{"title":"Primitive chain network simulations of double peaks in viscosity growth curves of densely branched pom-pom polymer melts in fast shear flows","authors":"Yuichi Masubuchi,&nbsp;Max G. Schußmann,&nbsp;Kyu Hyun,&nbsp;Manfred Wilhelm,&nbsp;Valerian Hirschberg,&nbsp;Giovanni Ianniruberto,&nbsp;Giuseppe Marrucci","doi":"10.1007/s00397-025-01502-1","DOIUrl":null,"url":null,"abstract":"<div><p>Despite many attempts, the molecular mechanism of the nonlinear viscoelastic response of polymeric liquids in fast shear flows has not yet been fully elucidated. In this study, we examined the viscosity growth curves for a few well-characterized, nearly monodisperse, densely branched pom-pom polystyrene melts. The viscosity growth curves exhibit double peaks rather than the widely reported (for most polymer melts) single peak. To investigate the underlying molecular mechanism responsible for the observed behavior, we conducted primitive chain network (multi-chain sliplink) simulations, and found that the first and second peaks correspond to arm orientation and backbone stretch, respectively. We further observed that backbone stretch is reduced by coherent molecular tumbling at the flow start-up, and hence the second peak intensity comes out comparable to that of the orientation-induced first peak. In our sample, the number of backbone entanglements is small, so the mechanism of branchpoint withdrawal does not play a significant role.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"64 6-7","pages":"263 - 271"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-025-01502-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite many attempts, the molecular mechanism of the nonlinear viscoelastic response of polymeric liquids in fast shear flows has not yet been fully elucidated. In this study, we examined the viscosity growth curves for a few well-characterized, nearly monodisperse, densely branched pom-pom polystyrene melts. The viscosity growth curves exhibit double peaks rather than the widely reported (for most polymer melts) single peak. To investigate the underlying molecular mechanism responsible for the observed behavior, we conducted primitive chain network (multi-chain sliplink) simulations, and found that the first and second peaks correspond to arm orientation and backbone stretch, respectively. We further observed that backbone stretch is reduced by coherent molecular tumbling at the flow start-up, and hence the second peak intensity comes out comparable to that of the orientation-induced first peak. In our sample, the number of backbone entanglements is small, so the mechanism of branchpoint withdrawal does not play a significant role.

快速剪切流动中密支聚球聚合物熔体粘度增长曲线双峰的原始链网络模拟
尽管进行了许多尝试,聚合物液体在快速剪切流动中非线性粘弹性响应的分子机制仍未完全阐明。在这项研究中,我们研究了一些特性良好的,几乎是单分散的,密集支化的聚苯乙烯熔体的粘度增长曲线。粘度增长曲线呈现双峰,而不是广泛报道的(对于大多数聚合物熔体)单峰。为了研究导致这种行为的潜在分子机制,我们进行了原始链网络(多链滑链)模拟,发现第一和第二峰分别对应于臂取向和骨干拉伸。我们进一步观察到,在流动启动时,相干分子翻滚减少了主链的拉伸,因此第二峰强度与取向诱导的第一峰强度相当。在我们的样本中,骨干缠结的数量很少,因此分支点退出的机制没有发挥显著作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信