{"title":"Integral networks of nonlinear oscillators","authors":"S. D. Glyzin, A. Yu. Kolesov","doi":"10.1134/S0040577925070049","DOIUrl":null,"url":null,"abstract":"<p> We consider some special systems of integro-differential equations, the so-called integral networks of nonlinear oscillators. These networks are obtained from finite-dimensional fully connected networks when the number of interacting oscillators tends to infinity. We study both general properties of the introduced class of equations and the characteristic features of the dynamics of integral networks. Namely, we establish the fundamental possibility of the existence of so-called periodic regimes of multicluster synchronization in these networks. For any such regime, the set of oscillators decomposes into <span>\\(r\\)</span>, <span>\\(r\\ge 2\\)</span>, nonintersecting classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously. We also establish the realizability of the phenomenon of continuum buffering, that is, of the existence under certain conditions of a continuum family of isolated attractors. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 1","pages":"1136 - 1153"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925070049","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We consider some special systems of integro-differential equations, the so-called integral networks of nonlinear oscillators. These networks are obtained from finite-dimensional fully connected networks when the number of interacting oscillators tends to infinity. We study both general properties of the introduced class of equations and the characteristic features of the dynamics of integral networks. Namely, we establish the fundamental possibility of the existence of so-called periodic regimes of multicluster synchronization in these networks. For any such regime, the set of oscillators decomposes into \(r\), \(r\ge 2\), nonintersecting classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously. We also establish the realizability of the phenomenon of continuum buffering, that is, of the existence under certain conditions of a continuum family of isolated attractors.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.