Neural network-based forecasting and uncertainty analysis of new power generation capacity of electric energy

Q2 Energy
Xingyu Dou, Zehan Cui
{"title":"Neural network-based forecasting and uncertainty analysis of new power generation capacity of electric energy","authors":"Xingyu Dou,&nbsp;Zehan Cui","doi":"10.1186/s42162-025-00546-0","DOIUrl":null,"url":null,"abstract":"<div><p>The prediction of new energy generation is challenging due to its intermittency and uncertainty. To solve this, we propose a framework combining an optimized multiscale convolutional neural network (MSCNN) and long - short - term memory network (LSTM). MSCNN improves feature extraction with dynamic scale selection and deep residual modules. LSTM captures long - term dependencies better using bidirectional processing and attention mechanisms. We also introduce a fuzzy decision support system (FDSS) to handle prediction uncertainty. Our model outperforms ARIMA, SVM, Gradient Boosting, CNN, and RNN in hourly, daily, and weekly predictions. It also excels in uncertainty quantification and generalization, offering strong support for accurate new energy generation prediction and dispatch.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00546-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00546-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of new energy generation is challenging due to its intermittency and uncertainty. To solve this, we propose a framework combining an optimized multiscale convolutional neural network (MSCNN) and long - short - term memory network (LSTM). MSCNN improves feature extraction with dynamic scale selection and deep residual modules. LSTM captures long - term dependencies better using bidirectional processing and attention mechanisms. We also introduce a fuzzy decision support system (FDSS) to handle prediction uncertainty. Our model outperforms ARIMA, SVM, Gradient Boosting, CNN, and RNN in hourly, daily, and weekly predictions. It also excels in uncertainty quantification and generalization, offering strong support for accurate new energy generation prediction and dispatch.

基于神经网络的电能新增发电容量预测与不确定性分析
由于其间歇性和不确定性,对新能源发电的预测具有挑战性。为了解决这个问题,我们提出了一种将优化的多尺度卷积神经网络(MSCNN)和长短期记忆网络(LSTM)相结合的框架。MSCNN通过动态尺度选择和深度残差模块改进了特征提取。LSTM使用双向处理和注意机制更好地捕获长期依赖关系。我们还引入了模糊决策支持系统(FDSS)来处理预测的不确定性。我们的模型在每小时、每天和每周的预测中都优于ARIMA、SVM、Gradient Boosting、CNN和RNN。该方法在不确定性量化和泛化方面也很出色,为新能源发电的准确预测和调度提供了有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信