{"title":"Impact of Electrical Storms of Magnetospheric-Ionospheric Origin on Geosphere Interactions","authors":"L. F. Chernogor","doi":"10.3103/S0884591325040026","DOIUrl":null,"url":null,"abstract":"<p>The quantitative analysis of processes in the subsystems electric field–ionospheric current–atmosphere–ionosphere and electric field–atmosphere–lithosphere, triggered by powerful geomagnetic storms, is a relevant task. The study aims to assess the impact of the electrical storms of magnetospheric-ionospheric origin on the interaction between the external and internal geospheres. The study quantitatively evaluates the role of such electrical storms in the interaction between the external and internal geospheres within the SIMMIAE system. Due to the dissipation of ionospheric current under the action of the electric field, the atmospheric temperature at altitudes of 120–350 km increases by tens to hundreds of Kelvins during the day and by units to hundreds of Kelvins during the night. It has been shown that the heated atmospheric gas rises with a speed varying from tens to hundreds of meters per second depending on altitude. The characteristic time for the ascent of heated atmospheric gas decreases with altitude, from approximately 10 to 4 min during the day and from 40 to 8–9 min during the night. The heat flux density is maximal at an altitude of around 150 km, reaching 20 mW/m<sup>2</sup> during the day and 0.1–0.2 mW/m<sup>2</sup> during the night. The maximum power of Joule heating in the atmosphere is 200 GW during the day and 1–2 GW during the night. The quantity of Joule heat in the atmosphere reaches 200 TJ during the day and 5–6 TJ during the night. An electrical storm of magnetospheric-ionospheric origin also induces an electrical storm in the lithosphere. In this case, the electric field strength in the lithosphere can reach approximately 10–100 µV/m, the power of Joule heating ranges from 1 to 1000 MW, and the energy spans 1–40 000 GJ. Joule heating of the atmosphere and lithosphere acts as a triggering process in response to the electric field. The triggering coefficient ranges from 10<sup>10</sup> to 10<sup>11</sup> for the thermosphere and from 10<sup>12</sup> to 10<sup>13</sup> for the lithosphere. Seven-point scales for classifying electrical storms in the atmosphere and lithosphere are proposed.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 4","pages":"151 - 160"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591325040026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The quantitative analysis of processes in the subsystems electric field–ionospheric current–atmosphere–ionosphere and electric field–atmosphere–lithosphere, triggered by powerful geomagnetic storms, is a relevant task. The study aims to assess the impact of the electrical storms of magnetospheric-ionospheric origin on the interaction between the external and internal geospheres. The study quantitatively evaluates the role of such electrical storms in the interaction between the external and internal geospheres within the SIMMIAE system. Due to the dissipation of ionospheric current under the action of the electric field, the atmospheric temperature at altitudes of 120–350 km increases by tens to hundreds of Kelvins during the day and by units to hundreds of Kelvins during the night. It has been shown that the heated atmospheric gas rises with a speed varying from tens to hundreds of meters per second depending on altitude. The characteristic time for the ascent of heated atmospheric gas decreases with altitude, from approximately 10 to 4 min during the day and from 40 to 8–9 min during the night. The heat flux density is maximal at an altitude of around 150 km, reaching 20 mW/m2 during the day and 0.1–0.2 mW/m2 during the night. The maximum power of Joule heating in the atmosphere is 200 GW during the day and 1–2 GW during the night. The quantity of Joule heat in the atmosphere reaches 200 TJ during the day and 5–6 TJ during the night. An electrical storm of magnetospheric-ionospheric origin also induces an electrical storm in the lithosphere. In this case, the electric field strength in the lithosphere can reach approximately 10–100 µV/m, the power of Joule heating ranges from 1 to 1000 MW, and the energy spans 1–40 000 GJ. Joule heating of the atmosphere and lithosphere acts as a triggering process in response to the electric field. The triggering coefficient ranges from 1010 to 1011 for the thermosphere and from 1012 to 1013 for the lithosphere. Seven-point scales for classifying electrical storms in the atmosphere and lithosphere are proposed.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.