Dirichlet dynamical zeta function for billiard flow

IF 0.5 4区 数学 Q3 MATHEMATICS
Vesselin Petkov
{"title":"Dirichlet dynamical zeta function for billiard flow","authors":"Vesselin Petkov","doi":"10.1007/s00013-025-02141-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Dirichlet dynamical zeta function <span>\\(\\eta _D(s)\\)</span> for billiard flow corresponding to several strictly convex disjoint obstacles. For large <span>\\({{\\,\\textrm{Re}\\,}}s\\)</span>, we have <span>\\(\\eta _D(s) =\\sum _{n= 1}^{\\infty } a_n e^{-\\lambda _n s}, \\, a_n \\in {\\mathbb {R}}\\)</span>, and <span>\\(\\eta _D\\)</span> admits a meromorphic continuation to <span>\\({\\mathbb {C}}\\)</span>. We obtain some conditions of the frequencies <span>\\(\\lambda _n\\)</span> and some sums of coefficients <span>\\(a_n\\)</span> which imply that <span>\\(\\eta _D\\)</span> cannot be prolonged as an entire function.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"201 - 212"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02141-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Dirichlet dynamical zeta function \(\eta _D(s)\) for billiard flow corresponding to several strictly convex disjoint obstacles. For large \({{\,\textrm{Re}\,}}s\), we have \(\eta _D(s) =\sum _{n= 1}^{\infty } a_n e^{-\lambda _n s}, \, a_n \in {\mathbb {R}}\), and \(\eta _D\) admits a meromorphic continuation to \({\mathbb {C}}\). We obtain some conditions of the frequencies \(\lambda _n\) and some sums of coefficients \(a_n\) which imply that \(\eta _D\) cannot be prolonged as an entire function.

台球流的Dirichlet动态zeta函数
研究了几种严格凸不相交障碍物对应的台球流的Dirichlet动态zeta函数\(\eta _D(s)\)。对于较大的\({{\,\textrm{Re}\,}}s\),我们有\(\eta _D(s) =\sum _{n= 1}^{\infty } a_n e^{-\lambda _n s}, \, a_n \in {\mathbb {R}}\),而\(\eta _D\)允许亚纯延拓到\({\mathbb {C}}\)。我们得到了频率\(\lambda _n\)和系数和\(a_n\)的一些条件,这意味着\(\eta _D\)不能作为一个完整的函数展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信