The Analysis of Block Joint Sparse Recovery Using Block Signal Space Matching Pursuit

IF 0.9 3区 数学 Q2 MATHEMATICS
Haifeng Li, Hao Ying, Jinming Wen
{"title":"The Analysis of Block Joint Sparse Recovery Using Block Signal Space Matching Pursuit","authors":"Haifeng Li,&nbsp;Hao Ying,&nbsp;Jinming Wen","doi":"10.1007/s10114-025-3171-0","DOIUrl":null,"url":null,"abstract":"<div><p>In many practical applications, we need to recover block sparse signals. In this paper, we encounter the system model where joint sparse signals exhibit block structure. To reconstruct this category of signals, we propose a new algorithm called block signal subspace matching pursuit (BSSMP) for the block joint sparse recovery problem in compressed sensing, which simultaneously reconstructs the support of block jointly sparse signals from a common sensing matrix. To begin with, we consider the case where block joint sparse matrix <b>X</b> has full column rank and any <i>r</i> nonzero row-blocks are linearly independent. Based on these assumptions, our theoretical analysis indicates that the BSSMP algorithm could reconstruct the support of <b>X</b> through at most <span>\\(k - r + \\left\\lceil {{r \\over L}} \\right\\rceil\\)</span> iterations if sensing matrix <b>A</b> satisfies the block restricted isometry property of order <i>L</i>(<i>K</i> − <i>r</i>) + <i>r</i> + 1 with <span>\\({\\delta _{{B_{L( {K - r}) + r + 1}}}}&lt; \\max \\{{{{\\sqrt r} \\over {\\sqrt {K + {r \\over 4}} + \\sqrt {{r \\over 4}} }},{{\\sqrt L} \\over {\\sqrt {Kd} + \\sqrt L}}}\\}\\)</span>. This condition improves the existing result.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 6","pages":"1635 - 1652"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10114-025-3171-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3171-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In many practical applications, we need to recover block sparse signals. In this paper, we encounter the system model where joint sparse signals exhibit block structure. To reconstruct this category of signals, we propose a new algorithm called block signal subspace matching pursuit (BSSMP) for the block joint sparse recovery problem in compressed sensing, which simultaneously reconstructs the support of block jointly sparse signals from a common sensing matrix. To begin with, we consider the case where block joint sparse matrix X has full column rank and any r nonzero row-blocks are linearly independent. Based on these assumptions, our theoretical analysis indicates that the BSSMP algorithm could reconstruct the support of X through at most \(k - r + \left\lceil {{r \over L}} \right\rceil\) iterations if sensing matrix A satisfies the block restricted isometry property of order L(Kr) + r + 1 with \({\delta _{{B_{L( {K - r}) + r + 1}}}}< \max \{{{{\sqrt r} \over {\sqrt {K + {r \over 4}} + \sqrt {{r \over 4}} }},{{\sqrt L} \over {\sqrt {Kd} + \sqrt L}}}\}\). This condition improves the existing result.

基于块信号空间匹配追踪的块联合稀疏恢复分析
在许多实际应用中,我们需要恢复块稀疏信号。在本文中,我们遇到了联合稀疏信号呈现块结构的系统模型。为了重建这类信号,针对压缩感知中的块联合稀疏恢复问题,我们提出了一种新的算法,称为块信号子空间匹配追踪(BSSMP),该算法同时从一个公共感知矩阵中重建块联合稀疏信号的支持。首先,我们考虑块联合稀疏矩阵X具有满列秩且任意r个非零的行块是线性无关的情况。基于这些假设,我们的理论分析表明,BSSMP算法最多可以重构X的支持 \(k - r + \left\lceil {{r \over L}} \right\rceil\) 如果感知矩阵A满足L(K−r) + r + 1阶的块限制等距性质,则迭代 \({\delta _{{B_{L( {K - r}) + r + 1}}}}< \max \{{{{\sqrt r} \over {\sqrt {K + {r \over 4}} + \sqrt {{r \over 4}} }},{{\sqrt L} \over {\sqrt {Kd} + \sqrt L}}}\}\). 这个条件改进了现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信