Berry–Esseen Bounds and Cramér-Type Moderate Deviations for the Sample Mean and the MLE of the Growth Rate for a Jump-Type CIR Process

IF 0.9 3区 数学 Q2 MATHEMATICS
Fuqing Gao, Zhi Qu
{"title":"Berry–Esseen Bounds and Cramér-Type Moderate Deviations for the Sample Mean and the MLE of the Growth Rate for a Jump-Type CIR Process","authors":"Fuqing Gao,&nbsp;Zhi Qu","doi":"10.1007/s10114-025-3231-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study Berry–Esseen bounds and Cramér-type moderate deviations of a jump-type Cox–Ingersoll–Ross (CIR) process driven by a standard Wiener process and a subordinator. In the subcritical case, we obtain the best Berry–Esseen bound of the sample mean and the MLE of the growth rate if the Lévy measure of the subordinator has finite third order moment. Under the Cramér condition, we establish the Cramér-type moderate deviations of the MLE of the growth rate. We first derive a Berry–Esseen bound, a deviation inequality and the Cramér-type moderate deviations for the sample mean of the CIR process by analyzing the asymptotic behaviors of the characteristic function and the moment generating function of the sample mean. Then we analyze a type of additive functional of the jump-type CIR process and use a transformation to study the Berry–Esseen bound and the Cramér-type moderate deviations for the MLE of the growth rate.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 6","pages":"1508 - 1530"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3231-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study Berry–Esseen bounds and Cramér-type moderate deviations of a jump-type Cox–Ingersoll–Ross (CIR) process driven by a standard Wiener process and a subordinator. In the subcritical case, we obtain the best Berry–Esseen bound of the sample mean and the MLE of the growth rate if the Lévy measure of the subordinator has finite third order moment. Under the Cramér condition, we establish the Cramér-type moderate deviations of the MLE of the growth rate. We first derive a Berry–Esseen bound, a deviation inequality and the Cramér-type moderate deviations for the sample mean of the CIR process by analyzing the asymptotic behaviors of the characteristic function and the moment generating function of the sample mean. Then we analyze a type of additive functional of the jump-type CIR process and use a transformation to study the Berry–Esseen bound and the Cramér-type moderate deviations for the MLE of the growth rate.

跳跃型CIR过程增长率的样本均值和最大似然值的Berry-Esseen边界和cram - type中等偏差
本文研究了由标准Wiener过程和从属过程驱动的跳跃型Cox-Ingersoll-Ross (CIR)过程的Berry-Esseen边界和cram -type中等偏差。在次临界情况下,我们得到了样本均值的最佳Berry-Esseen界和增长率的最大似然,如果从属子的lsamvy测度具有有限的三阶矩。在cramamer条件下,我们建立了增长率MLE的cramamer -type中等偏差。首先,通过分析样本均值的特征函数和矩生成函数的渐近行为,导出了CIR过程样本均值的Berry-Esseen界、一个偏差不等式和cramsamri型中等偏差。然后,我们分析了跳跃型CIR过程的一类加性泛函,并利用变换研究了增长率MLE的Berry-Esseen界和cram - rs型中等偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信