Teng Cui, Shuang Liu, Manfred H. Wagner, Qian Huang
{"title":"Consistent modeling of nonlinear shear and elongational start-up data of entangled polystyrene solutions","authors":"Teng Cui, Shuang Liu, Manfred H. Wagner, Qian Huang","doi":"10.1007/s00397-025-01494-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear shear and elongational start-up data of three entangled PS solutions consisting of the same weight fraction of a linear long-chain polystyrene PS-600 k and three different styrene oligomeric solvents were recently reported by Cui et al. (Rheol Acta 64:97-105, 2025). The solvents are two linear styrene oligomers of different molecular weights as well as a star styrene oligomer. We show that start-up of shear viscosity and apparent normal stress difference as well as start-up of elongational viscosity can consistently be described by the Rotation Zero Stretch (RZS) model (Rheol Acta 63:573, 2024; Phys Fluids 36:093124, 2024), which is based on the tube model and a flow-strength sensitive evolution equation of stretch. In extensional flows, the RZS model reduces to the Enhanced Relaxation of Stretch (ERS) model (J Rheol. 65:1413, 2021). The modeling is based exclusively on the linear-viscoelastic characterization of the solutions and a consistent set of Rouse stretch relaxation times for PS-600 k.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"64 6-7","pages":"255 - 261"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-025-01494-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-025-01494-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear shear and elongational start-up data of three entangled PS solutions consisting of the same weight fraction of a linear long-chain polystyrene PS-600 k and three different styrene oligomeric solvents were recently reported by Cui et al. (Rheol Acta 64:97-105, 2025). The solvents are two linear styrene oligomers of different molecular weights as well as a star styrene oligomer. We show that start-up of shear viscosity and apparent normal stress difference as well as start-up of elongational viscosity can consistently be described by the Rotation Zero Stretch (RZS) model (Rheol Acta 63:573, 2024; Phys Fluids 36:093124, 2024), which is based on the tube model and a flow-strength sensitive evolution equation of stretch. In extensional flows, the RZS model reduces to the Enhanced Relaxation of Stretch (ERS) model (J Rheol. 65:1413, 2021). The modeling is based exclusively on the linear-viscoelastic characterization of the solutions and a consistent set of Rouse stretch relaxation times for PS-600 k.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."