Preparation and characterization of cuttlefish ink-loaded detachable silk microneedles with robust reactive oxygen species-scavenging and photothermal performance
IF 2.3 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qisheng Luo, Delin Li, Zhaoyang Tang, Cheng Zhou, Xiaoge Yang, Ningyu Di, Bin Ling, Yao Li, Xiangdong Kong
{"title":"Preparation and characterization of cuttlefish ink-loaded detachable silk microneedles with robust reactive oxygen species-scavenging and photothermal performance","authors":"Qisheng Luo, Delin Li, Zhaoyang Tang, Cheng Zhou, Xiaoge Yang, Ningyu Di, Bin Ling, Yao Li, Xiangdong Kong","doi":"10.1007/s11706-025-0730-3","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive oxygen species (ROS) are highly prevalent in skin-related impairments and accelerate chronic ulcer progression. The routine subcutaneous administration approaches combining drug delivery with microenvironment intervention are widely developed for skin-related treatment but lack effective outcomes. Herein, we present a cuttlefish ink-derived nanoparticles (CNPs)-integrated microneedles patch, silk fibroin and cuttlefish ink-derived melanin nanoparticles (SC-MNs), that can easily be inserted into the skin and alleviate ROS. The microneedle tips, formed from silk fibroin and treated with methanol vapor annealing, turn to increased β-sheet and enhanced mechanical strength. Meanwhile, the tips can rapidly detach from SC-MNs in mildly acidic conditions due to the introduction of NaHCO<sub>3</sub>. SC-MNs also exhibited a unique ROS obliteration capacity. Furthermore, under near-infrared irradiation, SC-MNs triggered photothermal performance, which elicited reliable tumor cell-killing effects. Collectively, these SC-MN patches described here can provide a promising platform for combined ROS-scavenging and photothermal therapy, which makes them a potential candidate in skin-related disease management.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0730-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) are highly prevalent in skin-related impairments and accelerate chronic ulcer progression. The routine subcutaneous administration approaches combining drug delivery with microenvironment intervention are widely developed for skin-related treatment but lack effective outcomes. Herein, we present a cuttlefish ink-derived nanoparticles (CNPs)-integrated microneedles patch, silk fibroin and cuttlefish ink-derived melanin nanoparticles (SC-MNs), that can easily be inserted into the skin and alleviate ROS. The microneedle tips, formed from silk fibroin and treated with methanol vapor annealing, turn to increased β-sheet and enhanced mechanical strength. Meanwhile, the tips can rapidly detach from SC-MNs in mildly acidic conditions due to the introduction of NaHCO3. SC-MNs also exhibited a unique ROS obliteration capacity. Furthermore, under near-infrared irradiation, SC-MNs triggered photothermal performance, which elicited reliable tumor cell-killing effects. Collectively, these SC-MN patches described here can provide a promising platform for combined ROS-scavenging and photothermal therapy, which makes them a potential candidate in skin-related disease management.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.