A Data-Driven Equivalent Modeling Approach for Large-Amplitude Liquid Sloshing Under Microgravity Environment

Jiawei Huo, Jing Lyu
{"title":"A Data-Driven Equivalent Modeling Approach for Large-Amplitude Liquid Sloshing Under Microgravity Environment","authors":"Jiawei Huo,&nbsp;Jing Lyu","doi":"10.1007/s42423-025-00172-8","DOIUrl":null,"url":null,"abstract":"<div><p>The establishment of an equivalent model of liquid sloshing in spacecraft tanks is of great importance for the stabilization of spacecraft attitude motions and the design of attitude control system. In this paper, a composite moving pulsating ball equivalent mechanical model (MPBM) with parameter identification and neural-network based error correction is proposed. In this model, the MPBM parameters are identified using a genetic algorithm combined with a particle swarm optimization algorithm (GA-PSO). The associated model error is predicted using a gate recurrent unit (GRU) neural network and compensated. Numerical experiments have been conducted and simulation results have confirmed the accuracy and reliability of the composite model, as well as the fast estimation of sloshing force and moment compared with the original MPBM.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"8 1","pages":"47 - 59"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-025-00172-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of an equivalent model of liquid sloshing in spacecraft tanks is of great importance for the stabilization of spacecraft attitude motions and the design of attitude control system. In this paper, a composite moving pulsating ball equivalent mechanical model (MPBM) with parameter identification and neural-network based error correction is proposed. In this model, the MPBM parameters are identified using a genetic algorithm combined with a particle swarm optimization algorithm (GA-PSO). The associated model error is predicted using a gate recurrent unit (GRU) neural network and compensated. Numerical experiments have been conducted and simulation results have confirmed the accuracy and reliability of the composite model, as well as the fast estimation of sloshing force and moment compared with the original MPBM.

微重力环境下大振幅液体晃动的数据驱动等效建模方法
航天器储罐内液体晃动等效模型的建立对航天器姿态运动的稳定和姿态控制系统的设计具有重要意义。提出了一种具有参数辨识和基于神经网络误差修正的复合运动脉动球等效力学模型。在该模型中,采用遗传算法结合粒子群优化算法(GA-PSO)对MPBM参数进行识别。使用门递归单元(GRU)神经网络预测相关模型误差并进行补偿。数值实验和仿真结果验证了复合模型的准确性和可靠性,并且与原MPBM相比,可以快速估计出晃动力和力矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信