The Brylinski beta function of a coaxial layer

IF 0.5 4区 数学 Q3 MATHEMATICS
Pooja Rani, M. K. Vemuri
{"title":"The Brylinski beta function of a coaxial layer","authors":"Pooja Rani,&nbsp;M. K. Vemuri","doi":"10.1007/s00013-025-02138-6","DOIUrl":null,"url":null,"abstract":"<div><p>In (Differential Geom. Appl. 92: Paper No. 102078, 12 pp., 2024), an analogue of Brylinski’s knot beta function was defined for a compactly supported (Schwartz) distribution <i>T</i> on Euclidean space. Here we consider the Brylinski beta function of the distribution defined by a coaxial layer on a submanifold of Euclidean space. We prove that it has an analytic continuation to the whole complex plane as a meromorphic function with only simple poles, and in the case of a coaxial layer on a space curve, we compute some of the residues in terms of the curvature and torsion.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"213 - 225"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02138-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In (Differential Geom. Appl. 92: Paper No. 102078, 12 pp., 2024), an analogue of Brylinski’s knot beta function was defined for a compactly supported (Schwartz) distribution T on Euclidean space. Here we consider the Brylinski beta function of the distribution defined by a coaxial layer on a submanifold of Euclidean space. We prove that it has an analytic continuation to the whole complex plane as a meromorphic function with only simple poles, and in the case of a coaxial layer on a space curve, we compute some of the residues in terms of the curvature and torsion.

同轴层的Brylinski beta函数
在微分地球。应用程序92:论文编号102078,12页,2024),定义了在欧几里得空间上紧支持(Schwartz)分布T的Brylinski的结β函数的模拟。本文考虑欧氏空间子流形上由同轴层定义的分布的Brylinski beta函数。证明了它作为一个只有简单极点的亚纯函数在整个复平面上具有解析延拓性,并在空间曲线上的同轴层的情况下,计算了一些关于曲率和扭转的残数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信