Infinitely many counterexamples of a conjecture of Franušić and Jadrijević

IF 0.5 4区 数学 Q3 MATHEMATICS
Shubham Gupta
{"title":"Infinitely many counterexamples of a conjecture of Franušić and Jadrijević","authors":"Shubham Gupta","doi":"10.1007/s00013-025-02144-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>d</i> be a square-free integer such that <span>\\(d \\equiv 15 \\pmod {60}\\)</span> and Pell’s equation <span>\\(x^2 - dy^2 = -6\\)</span> is solvable in rational integers <i>x</i> and <i>y</i>. In this paper, we prove that there exist infinitely many Diophantine quadruples in <span>\\(\\mathbb {Z}[\\sqrt{d}]\\)</span> with the property <i>D</i>(<i>n</i>) for certain <i>n</i>’s. As an application of it, we ‘unconditionally’ prove the existence of infinitely many rings <span>\\(\\mathbb {Z}[\\sqrt{d}]\\)</span> for which the conjecture of Franušić and Jadrijević (Conjecture 1.1) does ‘not’ hold. This conjecture states a relationship between the existence of a Diophantine quadruple in <span>\\(\\mathcal {R}\\)</span> with the property <i>D</i>(<i>n</i>) and the representability of <i>n</i> as a difference of two squares in <span>\\(\\mathcal {R}\\)</span>, where <span>\\(\\mathcal {R}\\)</span> is a commutative ring with unity.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"173 - 184"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02144-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let d be a square-free integer such that \(d \equiv 15 \pmod {60}\) and Pell’s equation \(x^2 - dy^2 = -6\) is solvable in rational integers x and y. In this paper, we prove that there exist infinitely many Diophantine quadruples in \(\mathbb {Z}[\sqrt{d}]\) with the property D(n) for certain n’s. As an application of it, we ‘unconditionally’ prove the existence of infinitely many rings \(\mathbb {Z}[\sqrt{d}]\) for which the conjecture of Franušić and Jadrijević (Conjecture 1.1) does ‘not’ hold. This conjecture states a relationship between the existence of a Diophantine quadruple in \(\mathcal {R}\) with the property D(n) and the representability of n as a difference of two squares in \(\mathcal {R}\), where \(\mathcal {R}\) is a commutative ring with unity.

Franušić和jadrijeviki猜想的无限反例
设d为一个无平方整数,使得\(d \equiv 15 \pmod {60}\)和Pell方程\(x^2 - dy^2 = -6\)在有理整数x和y中可解。本文证明了在\(\mathbb {Z}[\sqrt{d}]\)中存在无穷多个具有d (n)性质的丢番图四元组。作为它的一个应用,我们“无条件地”证明了无穷多个环\(\mathbb {Z}[\sqrt{d}]\)的存在,对于这些环Franušić和jadrijeviki(猜想1.1)的猜想“不”成立。这个猜想陈述了在\(\mathcal {R}\)中具有D(n)性质的丢番图四重体的存在性与在\(\mathcal {R}\)中n作为两个平方之差的可表示性之间的关系,其中\(\mathcal {R}\)是一个具有单位的交换环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信