Jorge García-Beni, Iris Paparelle, Valentina Parigi, Gian Luca Giorgi, Miguel C. Soriano, Roberta Zambrini
{"title":"Quantum machine learning via continuous-variable cluster states and teleportation","authors":"Jorge García-Beni, Iris Paparelle, Valentina Parigi, Gian Luca Giorgi, Miguel C. Soriano, Roberta Zambrini","doi":"10.1140/epjqt/s40507-025-00352-3","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new approach for a photonic platform suitable for distributed quantum machine learning and exhibiting memory. This measurement-based quantum reservoir computing takes advantage of continuous variable cluster states as the main quantum resource. Cluster states are key to several photonic quantum technologies, enabling universal quantum computing as well as quantum communication protocols. The proposed measurement-based quantum reservoir computing is based on a neural network of cluster states and local operations, where input data are encoded through measurement, thanks to quantum teleportation. In this design, measurements enable input injections, information processing and continuous monitoring for time series processing. The architecture’s power and versatility are tested by performing a set of benchmark tasks showing that the protocol displays internal memory and is suitable for both static and temporal information processing without hardware modifications. This design opens the way to distributed machine learning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00352-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00352-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new approach for a photonic platform suitable for distributed quantum machine learning and exhibiting memory. This measurement-based quantum reservoir computing takes advantage of continuous variable cluster states as the main quantum resource. Cluster states are key to several photonic quantum technologies, enabling universal quantum computing as well as quantum communication protocols. The proposed measurement-based quantum reservoir computing is based on a neural network of cluster states and local operations, where input data are encoded through measurement, thanks to quantum teleportation. In this design, measurements enable input injections, information processing and continuous monitoring for time series processing. The architecture’s power and versatility are tested by performing a set of benchmark tasks showing that the protocol displays internal memory and is suitable for both static and temporal information processing without hardware modifications. This design opens the way to distributed machine learning.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.