Quantum information metrics of a multi-level atom interacting with an SU(1;1) quantum amplifier system

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Ahmed A. Zahia, Hasnaa M. Saad, S. I. Ali, M. M. A. Ahmed, A.-S. F. Obada
{"title":"Quantum information metrics of a multi-level atom interacting with an SU(1;1) quantum amplifier system","authors":"Ahmed A. Zahia,&nbsp;Hasnaa M. Saad,&nbsp;S. I. Ali,&nbsp;M. M. A. Ahmed,&nbsp;A.-S. F. Obada","doi":"10.1140/epjqt/s40507-025-00394-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the quantum information dynamics of a multi-level atomic system interacting with an SU(1;1) quantum system, focusing on atomic inversion, entropy, coherence, and skew information. The system is specified as a two-level and three-level Λ-type configuration, incorporating multi-mode SU(1;1) quantum systems and the Stark effect. Numerical simulations are performed to solve the time-dependent density matrix equations under varying shift, intensity, and Stark parameters. Results show that increasing the shift stabilizes inversion but raises statistical uncertainty, while greater field intensity amplifies entropy. The Stark amplitude suppresses decoherence and improves quantum information retention. Negativity is used to quantify entanglement between the first two SU(1;1) modes, showing that stronger Stark shifts stabilize entanglement and coherence. Three-level systems consistently outperform two-level ones in preserving coherence and entanglement due to enhanced interference and spectral separation. Eigenvalue analysis reveals the nonlinear structure of three-level systems, explaining their robustness. These findings are supported by recent experiments in SU(1;1) interferometry and Stark-tuned quantum systems, offering insights for quantum sensing, computation, and communication.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00394-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00394-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the quantum information dynamics of a multi-level atomic system interacting with an SU(1;1) quantum system, focusing on atomic inversion, entropy, coherence, and skew information. The system is specified as a two-level and three-level Λ-type configuration, incorporating multi-mode SU(1;1) quantum systems and the Stark effect. Numerical simulations are performed to solve the time-dependent density matrix equations under varying shift, intensity, and Stark parameters. Results show that increasing the shift stabilizes inversion but raises statistical uncertainty, while greater field intensity amplifies entropy. The Stark amplitude suppresses decoherence and improves quantum information retention. Negativity is used to quantify entanglement between the first two SU(1;1) modes, showing that stronger Stark shifts stabilize entanglement and coherence. Three-level systems consistently outperform two-level ones in preserving coherence and entanglement due to enhanced interference and spectral separation. Eigenvalue analysis reveals the nonlinear structure of three-level systems, explaining their robustness. These findings are supported by recent experiments in SU(1;1) interferometry and Stark-tuned quantum systems, offering insights for quantum sensing, computation, and communication.

多能级原子与SU(1;1)量子放大系统相互作用的量子信息度量
本研究研究了与SU(1;1)量子系统相互作用的多层次原子系统的量子信息动力学,重点研究了原子反转、熵、相干性和歪斜信息。该系统被指定为两级和三级Λ-type配置,包含多模SU(1;1)量子系统和斯塔克效应。数值模拟了在不同位移、强度和Stark参数下随时间变化的密度矩阵方程。结果表明,增大偏移量可以稳定反演,但会增加统计不确定性,而增大场强则会放大熵。Stark振幅抑制了退相干,提高了量子信息的保留。否定性用于量化前两个SU(1;1)模式之间的纠缠,表明更强的Stark位移稳定纠缠和相干性。由于增强的干涉和光谱分离,三能级系统在保持相干性和纠缠性方面始终优于二能级系统。特征值分析揭示了三能级系统的非线性结构,解释了它们的鲁棒性。这些发现得到了最近在SU(1;1)干涉测量和stark调谐量子系统中的实验的支持,为量子传感、计算和通信提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信