{"title":"Numerical investigation on dissimilar titanium-aluminum T-joints produced by Friction stir welding: process mechanics and material flow","authors":"Harikrishna Rana, Gianluca Buffa, Fabrizio Micari, Livan Fratini","doi":"10.1007/s12289-025-01915-6","DOIUrl":null,"url":null,"abstract":"<div><p>Friction stir welding (FSW) is a renowned joining technology for creating difficult-to-be-welded or non-weldable dissimilar material joints engendering viscoplastic flow at the interface. The present work compares the evolution of the material flow and properties during FSW of extremely different materials, viz., Aluminum alloy 6156 and commercially pure Ti Grade 2 with the help of numerical simulation and practical. The necessity of the appropriate heat flux to be achieved through balancing parameters was realized through simulation and experimental outcomes. In this paper, a specialized numerical model specifically designed to account for the presence of two distinct alloys, was employed to examine the effects of process parameters on temperature distribution, strain distribution, and material flow through velocity vectors. Valuable insights relating to material flow patterns observed while altering the mutual skin stringer positions have been elaborated. Macrostructural and microstructural characterizations were carried out to understand the localized material microstructural evolution comprising grain refinement, intermetallic, defects, etc. The parametric influence on grain morphologies, intermittent phases, joint strengths, and hardness are discussed in depth. Interestingly, the joint strength values recorded for prepared T-joints are comparable with the ones found for butt joint configurations reported in the literature.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01915-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Friction stir welding (FSW) is a renowned joining technology for creating difficult-to-be-welded or non-weldable dissimilar material joints engendering viscoplastic flow at the interface. The present work compares the evolution of the material flow and properties during FSW of extremely different materials, viz., Aluminum alloy 6156 and commercially pure Ti Grade 2 with the help of numerical simulation and practical. The necessity of the appropriate heat flux to be achieved through balancing parameters was realized through simulation and experimental outcomes. In this paper, a specialized numerical model specifically designed to account for the presence of two distinct alloys, was employed to examine the effects of process parameters on temperature distribution, strain distribution, and material flow through velocity vectors. Valuable insights relating to material flow patterns observed while altering the mutual skin stringer positions have been elaborated. Macrostructural and microstructural characterizations were carried out to understand the localized material microstructural evolution comprising grain refinement, intermetallic, defects, etc. The parametric influence on grain morphologies, intermittent phases, joint strengths, and hardness are discussed in depth. Interestingly, the joint strength values recorded for prepared T-joints are comparable with the ones found for butt joint configurations reported in the literature.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.