Selection-bias-adjusted inference for the bivariate normal distribution under soft-threshold sampling

IF 0.6 4区 数学 Q3 STATISTICS & PROBABILITY
Joseph B. Lang
{"title":"Selection-bias-adjusted inference for the bivariate normal distribution under soft-threshold sampling","authors":"Joseph B. Lang","doi":"10.1007/s10463-025-00925-0","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of estimating parameters and predicting outcomes of a bivariate Normal distribution is more challenging when, owing to data-dependent selection (or missingness or dropout), the available data are not a representative sample of bivariate realizations. This problem is addressed using an observation model that is induced by a combination of a multivariate Normal “science” model and a realistic “soft-threshold selection” model with unknown truncation point. This observation model, which is expressed using an intuitive selection subset notation, is a generalization of existing “hard-threshold” models. It affords simple-to-compute selection-bias-adjusted estimates of both the regression (conditional mean) parameters and the bivariate correlation. In addition, a simple bootstrap approach for computing both confidence and prediction intervals in the soft-threshold selection setting is described. Simulation results are promising. To motivate this research, two illustrative examples describe a setting where selection bias is an issue of concern.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 4","pages":"597 - 625"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00925-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of estimating parameters and predicting outcomes of a bivariate Normal distribution is more challenging when, owing to data-dependent selection (or missingness or dropout), the available data are not a representative sample of bivariate realizations. This problem is addressed using an observation model that is induced by a combination of a multivariate Normal “science” model and a realistic “soft-threshold selection” model with unknown truncation point. This observation model, which is expressed using an intuitive selection subset notation, is a generalization of existing “hard-threshold” models. It affords simple-to-compute selection-bias-adjusted estimates of both the regression (conditional mean) parameters and the bivariate correlation. In addition, a simple bootstrap approach for computing both confidence and prediction intervals in the soft-threshold selection setting is described. Simulation results are promising. To motivate this research, two illustrative examples describe a setting where selection bias is an issue of concern.

软阈值抽样下二元正态分布的选择偏差调整推理
当由于数据依赖的选择(或缺失或退出),可用数据不是二元实现的代表性样本时,估计二元正态分布的参数和预测结果的问题更具挑战性。利用多元正态“科学”模型和具有未知截断点的现实“软阈值选择”模型相结合的观测模型来解决这个问题。该观测模型采用直观的选择子集表示法表示,是对现有“硬阈值”模型的推广。它提供了回归(条件平均)参数和二元相关性的简单计算的选择偏差调整估计。此外,还描述了一种简单的自举方法,用于计算软阈值选择设置中的置信区间和预测区间。仿真结果令人鼓舞。为了激励这项研究,两个说明性的例子描述了选择偏差是一个值得关注的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信