Real-Time Detection and Tracking of Foreign Object Intrusions in Power Systems via Feature-Based Edge Intelligence

IF 3.2 Q3 ENERGY & FUELS
Xinan Wang;Di Shi;Fengyu Wang
{"title":"Real-Time Detection and Tracking of Foreign Object Intrusions in Power Systems via Feature-Based Edge Intelligence","authors":"Xinan Wang;Di Shi;Fengyu Wang","doi":"10.1109/OAJPE.2025.3611293","DOIUrl":null,"url":null,"abstract":"This paper presents a novel three-stage framework for real-time foreign object intrusion (FOI) detection and tracking in power transmission systems. The framework integrates: 1) a YOLOv7 segmentation model for fast and robust object localization, 2) a ConvNeXt-based feature extractor trained with triplet loss to generate discriminative embeddings, and 3) a feature-assisted IoU tracker that ensures resilient multi-object tracking under occlusion and motion. To enable scalable field deployment, the pipeline is optimized for deployment on low-cost edge hardware using mixed-precision inference. The system supports incremental updates by adding embeddings from previously unseen objects into a reference database without requiring model retraining. Extensive experiments on real-world surveillance and drone video datasets demonstrate the framework’s high accuracy and robustness across diverse FOI scenarios. In addition, hardware benchmarks on NVIDIA Jetson devices confirm the framework’s practicality and scalability for real-world edge applications.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"625-636"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11168407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11168407/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel three-stage framework for real-time foreign object intrusion (FOI) detection and tracking in power transmission systems. The framework integrates: 1) a YOLOv7 segmentation model for fast and robust object localization, 2) a ConvNeXt-based feature extractor trained with triplet loss to generate discriminative embeddings, and 3) a feature-assisted IoU tracker that ensures resilient multi-object tracking under occlusion and motion. To enable scalable field deployment, the pipeline is optimized for deployment on low-cost edge hardware using mixed-precision inference. The system supports incremental updates by adding embeddings from previously unseen objects into a reference database without requiring model retraining. Extensive experiments on real-world surveillance and drone video datasets demonstrate the framework’s high accuracy and robustness across diverse FOI scenarios. In addition, hardware benchmarks on NVIDIA Jetson devices confirm the framework’s practicality and scalability for real-world edge applications.
基于特征边缘智能的电力系统异物入侵实时检测与跟踪
本文提出了一种新的三阶段输电系统实时异物入侵检测与跟踪框架。该框架集成了:1)用于快速和鲁棒目标定位的YOLOv7分割模型,2)基于convnext的特征提取器,经过三组损失训练以生成判别嵌入,以及3)用于确保遮挡和运动下弹性多目标跟踪的特征辅助IoU跟踪器。为了实现可扩展的现场部署,管道经过优化,可以使用混合精度推理在低成本边缘硬件上部署。该系统通过在参考数据库中添加以前未见过的对象的嵌入来支持增量更新,而无需对模型进行再训练。在真实世界的监控和无人机视频数据集上进行的大量实验表明,该框架在不同的信息自由场景下具有高精度和鲁棒性。此外,NVIDIA Jetson设备上的硬件基准测试证实了该框架在实际边缘应用中的实用性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信