Gaussian Kernel-Based LSH for High-Dimensional Similarity Search

Masrat Rasool;Khelil Kassoul;Samir Brahim Belhaouari
{"title":"Gaussian Kernel-Based LSH for High-Dimensional Similarity Search","authors":"Masrat Rasool;Khelil Kassoul;Samir Brahim Belhaouari","doi":"10.1109/OJCS.2025.3602355","DOIUrl":null,"url":null,"abstract":"High-dimensional similarity search remains a critical challenge in machine learning, particularly when data lie on complex, non-linear manifolds that undermine the effectiveness of classical Locality-Sensitive Hashing (LSH). This work introduces Gaussian LSH, a kernel-based hashing framework that integrates over-clustering with Gaussian probability density modelling to improve locality preservation while maintaining computational efficiency. The method generates compact binary codes from a hybrid kernel–PDF score and supports scalable GPU-accelerated indexing for large datasets. Empirical evaluations across multiple visual and textual benchmarks demonstrate consistent improvements in recall and query latency compared to representative LSH variants and approximate nearest neighbour libraries. Gaussian LSH achieves recall gains of up to <inline-formula><tex-math>$\\text{9}\\,\\text{pp}$</tex-math></inline-formula> and latency reductions of up to <inline-formula><tex-math>$4.3\\times$</tex-math></inline-formula>, with benefits sustained across a range of code lengths. These results highlight the approach’s scalability and accuracy, supporting its use in medium- to large-scale similarity retrieval tasks across diverse data domains.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1402-1413"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11134766","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134766/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-dimensional similarity search remains a critical challenge in machine learning, particularly when data lie on complex, non-linear manifolds that undermine the effectiveness of classical Locality-Sensitive Hashing (LSH). This work introduces Gaussian LSH, a kernel-based hashing framework that integrates over-clustering with Gaussian probability density modelling to improve locality preservation while maintaining computational efficiency. The method generates compact binary codes from a hybrid kernel–PDF score and supports scalable GPU-accelerated indexing for large datasets. Empirical evaluations across multiple visual and textual benchmarks demonstrate consistent improvements in recall and query latency compared to representative LSH variants and approximate nearest neighbour libraries. Gaussian LSH achieves recall gains of up to $\text{9}\,\text{pp}$ and latency reductions of up to $4.3\times$, with benefits sustained across a range of code lengths. These results highlight the approach’s scalability and accuracy, supporting its use in medium- to large-scale similarity retrieval tasks across diverse data domains.
基于高斯核的LSH高维相似性搜索
高维相似性搜索仍然是机器学习中的一个关键挑战,特别是当数据位于复杂的非线性流形上时,这会破坏经典位置敏感哈希(LSH)的有效性。这项工作引入了高斯LSH,这是一种基于核的哈希框架,它将过度聚类与高斯概率密度建模相结合,在保持计算效率的同时提高了局部保存。该方法从混合内核- pdf分数生成紧凑的二进制代码,并支持可扩展的gpu加速索引大型数据集。跨多个视觉和文本基准的经验评估表明,与代表性LSH变体和近似近邻库相比,在召回和查询延迟方面有一致的改进。高斯LSH实现了高达$ $ text{9}\, $ $ text{pp}$的召回增益和高达$ $4.3\times$的延迟减少,并且在代码长度范围内持续受益。这些结果突出了该方法的可扩展性和准确性,支持其在跨不同数据域的中型到大规模相似性检索任务中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信