End-to-End Workflow for Machine-Learning-Based Qubit Readout With QICK and hls4ml

IF 4.6
Giuseppe Di Guglielmo;Botao Du;Javier Campos;Alexandra Boltasseva;Akash Dixit;Farah Fahim;Zhaxylyk Kudyshev;Santiago Lopez;Ruichao Ma;Gabriel N. Perdue;Nhan Tran;Omer Yesilyurt;Daniel Bowring
{"title":"End-to-End Workflow for Machine-Learning-Based Qubit Readout With QICK and hls4ml","authors":"Giuseppe Di Guglielmo;Botao Du;Javier Campos;Alexandra Boltasseva;Akash Dixit;Farah Fahim;Zhaxylyk Kudyshev;Santiago Lopez;Ruichao Ma;Gabriel N. Perdue;Nhan Tran;Omer Yesilyurt;Daniel Bowring","doi":"10.1109/TQE.2025.3604712","DOIUrl":null,"url":null,"abstract":"In this article, we present an end-to-end workflow for superconducting qubit readout that embeds codesigned neural networks into the quantum instrumentation control kit (QICK). Capitalizing on the custom firmware and software of the QICK platform, which is built on Xilinx radiofrequency system-on-chip field-programmable gate arrays (FPGAs), we aim to leverage machine learning (ML) to address critical challenges in qubit readout accuracy and scalability. The workflow utilizes the <monospace>hls4ml</monospace> package and employs quantization-aware training to translate ML models into hardware-efficient FPGA implementations via user-friendly Python application programming interfaces. We experimentally demonstrate the design, optimization, and integration of an ML algorithm for single transmon qubit readout, achieving 96% single-shot fidelity with a latency of 32.25 ns and less than 16% FPGA lookup table resource utilization. Our results offer the community an accessible workflow to advance ML-driven readout and adaptive control in quantum information processing applications.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-10"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159596","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11159596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present an end-to-end workflow for superconducting qubit readout that embeds codesigned neural networks into the quantum instrumentation control kit (QICK). Capitalizing on the custom firmware and software of the QICK platform, which is built on Xilinx radiofrequency system-on-chip field-programmable gate arrays (FPGAs), we aim to leverage machine learning (ML) to address critical challenges in qubit readout accuracy and scalability. The workflow utilizes the hls4ml package and employs quantization-aware training to translate ML models into hardware-efficient FPGA implementations via user-friendly Python application programming interfaces. We experimentally demonstrate the design, optimization, and integration of an ML algorithm for single transmon qubit readout, achieving 96% single-shot fidelity with a latency of 32.25 ns and less than 16% FPGA lookup table resource utilization. Our results offer the community an accessible workflow to advance ML-driven readout and adaptive control in quantum information processing applications.
基于机器学习的量子比特读出端到端工作流程与快速和hls4ml
在本文中,我们提出了超导量子比特读出的端到端工作流程,该工作流程将协同设计的神经网络嵌入到量子仪器控制套件(QICK)中。利用基于赛灵思射频系统芯片现场可编程门阵列(fpga)的QICK平台的定制固件和软件,我们的目标是利用机器学习(ML)来解决量子比特读出精度和可扩展性方面的关键挑战。该工作流利用hls4ml包并采用量化感知训练,通过用户友好的Python应用程序编程接口将ML模型转换为硬件高效的FPGA实现。我们通过实验展示了用于单传输量子比特读出的ML算法的设计、优化和集成,实现了96%的单次保真度,延迟为32.25 ns, FPGA查找表资源利用率低于16%。我们的研究结果为社区提供了一个可访问的工作流程,以推进量子信息处理应用中的ml驱动读出和自适应控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信