PCSR: Enabling Cross-Modal Semantic Retrieval With Privacy Preservation

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Hanqi Zhang;Yandong Zheng;Chang Xu;Liehuang Zhu;Can Zhang
{"title":"PCSR: Enabling Cross-Modal Semantic Retrieval With Privacy Preservation","authors":"Hanqi Zhang;Yandong Zheng;Chang Xu;Liehuang Zhu;Can Zhang","doi":"10.1109/TIFS.2025.3607246","DOIUrl":null,"url":null,"abstract":"Cross-modal semantic retrieval systems face significant privacy risks due to storing plaintext data on cloud servers. We propose PCSR, a privacy-preserving framework enabling semantic search directly on encrypted high-dimensional data. It consists of three essential modules: a cross-modal encoder, an approximate nearest neighbor (ANN) search algorithm, and an encryption algorithm. Specifically, we utilize CLIP, a deep neural network model, to extract features of images and texts. We design two ANN search methods for high-dimensional feature vectors by utilizing the space partitioning technique and Singular Value Decomposition algorithms, respectively. Furthermore, we employ adapted Random Matrix Multiplication (RMM) for efficient and secure vector similarity computations. Our rigorous security analysis demonstrates that our proposed schemes are secure. We conduct experiments on four datasets and systematically compare the performance of different encrypted retrieval methods. The superior performance validates the feasibility and efficiency of our proposed schemes.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"9905-9919"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11153750/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-modal semantic retrieval systems face significant privacy risks due to storing plaintext data on cloud servers. We propose PCSR, a privacy-preserving framework enabling semantic search directly on encrypted high-dimensional data. It consists of three essential modules: a cross-modal encoder, an approximate nearest neighbor (ANN) search algorithm, and an encryption algorithm. Specifically, we utilize CLIP, a deep neural network model, to extract features of images and texts. We design two ANN search methods for high-dimensional feature vectors by utilizing the space partitioning technique and Singular Value Decomposition algorithms, respectively. Furthermore, we employ adapted Random Matrix Multiplication (RMM) for efficient and secure vector similarity computations. Our rigorous security analysis demonstrates that our proposed schemes are secure. We conduct experiments on four datasets and systematically compare the performance of different encrypted retrieval methods. The superior performance validates the feasibility and efficiency of our proposed schemes.
PCSR:支持隐私保护的跨模态语义检索
跨模态语义检索系统由于在云服务器上存储明文数据而面临重大的隐私风险。我们提出PCSR,这是一个隐私保护框架,可以直接对加密的高维数据进行语义搜索。它由三个基本模块组成:跨模态编码器、近似最近邻(ANN)搜索算法和加密算法。具体来说,我们利用深度神经网络模型CLIP来提取图像和文本的特征。利用空间划分技术和奇异值分解算法设计了两种高维特征向量的人工神经网络搜索方法。此外,我们采用自适应随机矩阵乘法(RMM)进行有效和安全的向量相似性计算。我们严格的安全性分析表明,我们提出的方案是安全的。我们在四个数据集上进行了实验,系统地比较了不同加密检索方法的性能。优异的性能验证了所提方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信